
Masterarbeit

zur Erlangung des Grades Master of Science (M.Sc.)

�e role of �rm employees’ participation for the success of

�rm-initiated open source projects

Betreuer: Univ.-Prof. Dr. Frank �omas Piller

Beratungsassistent: Prof. Dr. Christoph Ihl

vorgelegt and der

Rheinisch-Westfälischen Technischen Hochschule Aachen

- Lehrstuhl der TIME Research Area –

von: Philipp Ständer

Kempener Str. 121

50733 Köln

Matr.-Nr.: 336329

Abgabetermin: 30.03.2016

Acknowledgement

I would like to thank Prof. Christoph Ihl, Christian Maschner, Fabian Mies, Miriam Schäfer,

Veit-Henning Köster, David Langer, Jan Krems and Alexander Esser for their suggestions

and critical review.

Last but not the least important, I would like to thank my parents and my family for every-

thing.

i

Contents

1 Introduction 1

2 �eory and Hypotheses 3

2.1 Introduction and Prior Research . 3

2.2 Incentives of Firms to use Open Source . 5

2.3 How can Success of Firms’ initiated Open Source Projects be measured? 5

2.4 Open Source So�ware and Free So�ware Licenses 6

2.5 Open Source So�ware as Public Good . 7

2.6 Open Source Business Models . 8

2.7 Open Source and So�ware as a Service (SaS) . 8

2.8 Open Source and Open Innovation . 10

2.9 Open Source Collaboration of Firms with external Developers 11

2.10 GitHub as Host for observed Projects . 12

2.11 Increasing commitment of Companies to Open Source 12

2.11.1 As an example of developing a common approach: Microso� and Open Source 12

2.11.2 GitHub’s Atom Editor and Microso�’s Visual Studio Code as example for

technology exchange between �rms and collaboration with the OS community 13

2.12 Forms of Participation on GitHub Projects . 15

2.13 Linear and Logistic Regression Models . 16

2.14 Fi�ing Linear Mixed-E�ects Models . 16

2.15 Hypotheses . 18

3 Data 19

3.1 Data Sources and Open Data Approach . 19

3.2 Selection of Programming Languages . 20

3.3 Restrictions of Data Collections . 23

3.4 Social-Success-Metrics of git Repositories . 23

3.5 Projects’ Data Enquiry . 25

3.6 Firms are relevant commercial Organizations . 27

3.7 Structure of a git Project . 27

3.8 Branches of Interest . 28

3.9 Firms’ License Usage . 28

3.10 Classi�cation of Developers . 30

3.11 Evaluation and Classi�cation of Commits . 31

3.12 Time and Location of Code Contribution . 31

ii

3.13 Observed Repositories . 34

3.14 �e Role of Developers on Issues . 34

3.15 Firms’ OS Commitment as Proxy for �ality of Work Environment 35

3.16 Microso� and GitHub Inc.: Contribution and Social Success Metrics of Atom and VSC 37

4 Analysis 39

4.1 Terms and De�nitions . 39

4.2 Slopes and Dots (on plot �gures) . 40

4.3 H 1: Firm employees’ participation a�ects the participation of external developers . 40

4.4 H 1.1: If �rm employees contribute source code more o�en, external developers do

as well . 40

4.4.1 H 1.1: Models and Terminology . 40

4.4.2 H 1.1: Plots . 41

4.4.3 H 1.1: Regression Tables . 41

4.4.4 H 1.1: Results and Interpretation . 42

4.5 H 1.2: If �rm employees participate more o�en on issue threads, external developers

do as well . 43

4.5.1 H 1.2.1: Models and Terminology for Issues 43

4.5.2 H 1.2.1: Plots for Issues . 43

4.5.3 H 1.2.1: Regression Tables for Issues . 43

4.5.4 H 1.2.2: Models for Issues’ Comments . 45

4.5.5 H 1.2.2: Plots for Issues’ Comments . 45

4.5.6 H 1.2.2: Regression Tables for Issues’ Comments 46

4.5.7 H 1.2.1 and H 1.2.2: Results and Interpretation 47

4.6 H 1: Results and Interpretation . 47

4.7 H 2: Firm employees’ participation (in the beginning) a�ects the (later) success of

�rm-initiated open source projects . 48

4.7.1 H 2.1: If �rm employees contribute source code more o�en in the beginning,

the project gets more successful . 48

4.8 H 2.1: Regression Tables . 49

4.9 H 2.1: Interpretation and Conclusion . 51

4.10 H 3: If �rm employees’ contribution share is higher overall the more likely the

project is popular . 52

4.10.1 H 3.1: Plots . 52

4.10.2 H 3.1: Regression Tables . 53

4.11 H 3: Results and Interpretation . 56

iii

5 Results and Conclusion 57

5.1 Implications and Managerial Advice . 57

5.2 Further Research . 58

A Listings 59

B Tables 68

B.1 Introduction and �eory . 68

B.2 Data and Basic Statistics Tables . 70

B.3 Regression Tables for H 1.1 . 77

B.4 Regression Tables for H 1.2.1 . 80

B.5 Regression Tables for H 1.2.2 . 83

B.6 Regression Tables and Data Summary for H 2.1 . 86

B.7 Regression Tables for H 3 . 96

C Graphics and Plots 114

C.1 Introduction and �eory . 114

C.2 Plots of Code Contribution . 116

C.3 Plots of Repositories . 117

C.4 Plots for H 1.1 . 125

C.5 Plots for H 1.2.1 . 125

C.6 Plots for H 1.2.2 . 127

D Open Source So�ware used for making this Study 128

References 130

iv

1 Introduction

Open source so�ware (OSS) is gaining more and more importance as innovation factor in so�ware

businesses. Also the number of �rms who have initiated open source (OS) projects has increased

quite substantially over time. �erefore, OSS has reached increasing a�ention by scholars in �elds

of organization and open innovation over the last past three decades. �ere are various popular

examples of OS projects which demonstrate the feasibility of running businesses with or on initiated

OS projects (Google, Twi�er, facebook and Microso� are just a few popular examples). But not only

big companies are actively involved in OSS development. A variety of small and medium-sized

enterprises have also initiated and maintained OS projects successfully. Some of those OS projects

are also part of their core business.

OS communities are technical communities and can help �rms to develop and deploy new techni-

cal innovations (Rosenkopf et al. (2001), Rosenkopf and Tushman (1998), Simcoe (2006); Fleming

and Waguespack (2007)). �us, �rms have credible reasons to collaborate with OS communities.

Nonetheless �rms that are involved in OS projects have to face various di�culties. One important

point is that �rms have to care about their relationship to the OS community and have to �nd a fair

way to join commercial (of the �rm) and non-commercial interests (of the OS community) without

reducing the e�ciency and the quality of innovation. Because of this symbiotic relationship be-

tween the �rm and the OS community (Dahlander and Magnusson (2005)) organizational obstacles

have to be solved by a �rm if it wants to collaborate with autonomous OS communities (Piezunka

and Dahlander (2013)) or sponsored OS communities (West and O’Mahony, 2008).

�is leads to the question to what extent �rm’s internal resources a�ect external resources. If we de-

�ne external contributors as individuals who contribute their own ideas (Piller and Walcher (2006)),

solutions (Jeppesen and Lakhani (2010)), knowledge (Laursen and Salter (2006)) or innovations (Ur-

ban and Von Hippel (1988)) we can regard external developers, who are external contributors, as

a resource of knowledge. �us, external developers will a�ect the capability of �rm’s absorptive

capacity of prior related knowledge (Cohen and Levinthal (1990)). Furthermore, we can assume

that over time external developers may have similar project-related knowledge as �rm employed

developers (Piezunka and Dahlander (2013)) and do represent their own interests whereas �rms

employed developers (sponsored contributors) represent the �rm’ s interests (Dahlander and Wallin

(2006)).

As Dahlander and Magnusson (2005) found out, ”OSS �rms can use symbiotic, commensalistic, or

parasitic approaches for interrelating to their communities” and by using the ”symbiotic approach,

�rms have more possibilities to in�uence the (OS) community” (Dahlander and Magnusson, 2005,

p.491-492). A new study from 2014 shows that ”OSS projects with large peripheral developer par-

1

ticipation
1

are those that are likely to be innovative and o�er high-quality” (Krishnamurthy et al.,

2016, p.40:22) and that ”presence of feature requests is positively associated with peripheral devel-

oper participation” (Krishnamurthy et al., 2016, p.40:23).

�is study will focus on the impact of �rm developers’ commitment on external developers’ commit-

ment and the long-term success of the projects. �erefore 58 �rms with more than 3000 published

projects (wri�en in the 10 most popular programming languages) hosted on GitHub
2

will be studied.

We will measure code contribution and communication actions (participation on issues) referred to

(1) the in�uence of �rm employed developers on external developers (and v.v.) and (2) the �nal

success / acceptance of a project on the platform. �us, the main questions are
3
:

• To what extent does �rm employed developers’ commitment encourage external developers’

commitment?

• Do external developers more o�en contribute source code if �rm employed developers con-

tribute proportionate more than usual?

• Do external developers participate more actively in issues if �rm’s developers do as well?

• Does participation in the beginning a�ect the later success of �rms’ initiated projects?

�e empirical �ndings mainly con�rm all hypotheses to the e�ect that participation of �rm em-

ployed developers has a signi�cant positive impact on external commitment and long-term success

of projects. Further details, explanations and interpretations of the empirical �ndings can be found

in chapter 5 on page 57.

1

peripheral developers = external developers

2

the worldwide largest and most popular open source hosting service (see Hye� (2011); Metz (2015); GitHub (2016b))

3

the hypotheses are formulated in chapter 2.15 on page 18

2

2 �eory and Hypotheses

2.1 Introduction and Prior Research

�ere are several reasons why �rms initiate open source (OS) projects. As West (2003) noticed,

�rms do publish source code in order to get their product widely adopted, to increase the likelihood

to a�ract developers
4

and to achieve faster technological development (Lerner and Tirole (2002)).

Beside that, all OS projects can be termed as collective action model which applies to the provision

of public goods, where a public good is non-excludable and non-rival (Olson, 2009, p.14). �us,

OS projects can be regarded as foundation for a novel, private-collective model for the motivation

of innovation (Hippel and Krogh (2003)). �is con�rms the assumption that any interested person

can voice their opinion when organizations search for innovation by soliciting suggestions from

externals (Alexy et al. (2012)). Most OS projects which are initiated by �rms are also part of their

business. Hence, they utilize resources as knowledge and ideas to maximize their value creation and

pro�t in the long run (Dahlander and Magnusson (2005)).

Because OS projects of �rms depend on the symbiotic relationship between internal end exter-

nal developers, externals’ suggestions can lead organizations to novel, useful, and actionable ideas

(Hill and Birkinshaw (2009)), develop new concepts (Katila and Ahuja (2002); Jeppesen and Lakhani

(2010); Shane (2000)) or �nd new markets for their technologies (Gruber et al. (2008); Shane (2000)).

So the ”wisdom of the crowds” (Surowiecki (2005)) depends on external suggestions which facil-

itates research on external sources of innovation (Dahlander and Magnusson (2005)) as on open

innovation (Chesbrough (2003)), crowdsourcing (Afuah and Tucci (2012)) and user-based innova-

tion (Von Hippel (1986)).

Most initiatives to engage external contributors do fail as Dahlander and Piezunka (2014) showed in

their study. �ey developed arguments about what increases the likelihood of ge�ing suggestions

from externals by proactive and reactive a�ention to suggestions. �ey say that �rms and commu-

nities have divergent rationales for existing which causes problems on interaction. Moreover, they

found out that early organizations’ engagements weigh more in the early stage and that �rms should

pay a�ention to new contributors. �us, they suggest to keep entry barriers low since it results in

a lower threshold for participation.

Piezunka and Dahlander (2013) developed a theory about the structures that are build around a

suggestion a�er it is posted. �ey say the more suggestions are related to each other, the greater is

the demand of externals for a suggestion. Additionally, the more a suggestion is debated by externals,

the higher the likelihood an organization will a�end to it. On the other side, the greater the diversity

4

�rst-mover advantages

3

of suggestions and the more suggestions competes with each other, the lower the likelihood that an

organization will a�end to it.

One of the initial ideas of the OSS community is to work for non-commercial reasons. �is means

that �rms have to deal with the term openness (Dahlander and Gann (2010)) and have to accept

that external developers are free to join and work on informal relationships (Dahlander and Mag-

nusson (2005)) whereas �rm-based so�ware creation is normally restricted to relations within the

�rm. To use the taxonomy by Feller et al. (2002), we can distinguish between economic, social and

technological motivation factors. As Bonaccorsi and Rossi (2006) found out, �rms are driven by eco-

nomic and technological factors rather than by social motivation factors. Contribution of external

developers depends on both extrinsic and intrinsic motivation
5

(Hertel et al. (2003); Hars and Ou

(2001); Lakhani et al. (2002)) or even by intellectual challenges (Raymond (2001); Hertel et al. (2003)).

�is supports the assumption that users o�en �nd solutions to their own problems and are willing

to share them when the marginal cost of sharing is low (Von Hippel (1976)). Furthermore, users

in OS projects are not protected by intellectual property rights (Waguespack and Fleming (2004)),

which is converse to intellectual property handling of traditional (in-house) so�ware development

by �rms.

West and O’mahony (2008) analyzed how corporate sponsorship in�uences OS communities. �ey

identi�ed three design dimensions for corporate sponsorship when designing OS communities:

1. intellectual property rights

2. development approach, and

3. model of community governance

Overall they came to the conclusion that openness of sponsored OS projects is more likely to o�er

transparency than accessibility, which has implications for their communities’ growth.

Dahlander and Gann (2010) analyzed also the relationship between OS so�ware �rms and communi-

ties. �ey �gured out that �rms who depend on a symbiotic approach have subtle means of control

to in�uence the community and are confronted with challenging managerial issues. For instance, if

a �rm is well-known and respected in the community, they have more in�uence on the development

activities performed in the community compared to less well-connected ones. �ey distinguish �ve

mechanism of subtle means of control (Dahlander and Magnusson, 2005, p.489):

1. devote �rm employees to work with and in the community

2. reputation of �rm employees in the community

3. fringe bene�ts

4. interaction tools which o�ers communication channels for the community

5

which is a social motivation

4

5. provide interesting tasks (’selling’ development tasks)

A greater possibility of in�uencing the community might result in several bene�ts, but may also

emerge the following managerial issues (Dahlander and Magnusson, 2005, p.489):

• respecting the norms and values of OSS communities

• using licenses in a suitable way

• a�racting developers and users

• dealing with the resource consumption involved in community development

• aligning di�erent interests about the nature of work

• resolving ambiguity about control and ownership

2.2 Incentives of Firms to use Open Source

Organizations use OSS to reduce costs and standardization expenses (Wichmann (2002); Ghosh

(2007)). Beside that, OSS is less costly because there are no license costs to the contrary of propri-

etary so�ware (Hawkins (2004) and Wichmann (2002)). So�ware products create costs for licensing,

customization, maintaining and training (Weiss (2005)), but as Wichmann (2002) found out, the li-

censing costs are normally the main reason for managers to use OSS.

2.3 How can Success of Firms’ initiated Open Source Projects be measured?

As mentioned before, �rms are driven by economic and technological factors (Feller et al. (2002))

whereas developers are more driven by technological and particularly social motivation factors

(Bonaccorsi and Rossi (2006)). So in between we have the technological motivation factor which

motivates �rms and developers. So we can roughly divide success into economic and social suc-

cess
6
. Here, social success is popularity in OS communities (i.e. many developers pay a�ention or

actively participate on the project). As shown in a previous research, the number of participants

depends on the complexity of the OS project (Piezunka and Dahlander (2013)). In this study we will

concentrate on projects’ social success, which is closely related to technical success as well. Social

and technical success can be analyzed in a more reliable way since most �rms simply do not release

any business related numbers on their projects for external research.

To compare the impact of internal and external developers on a �rms’ initiated OS projects we

have to analyze the sort and rate of contribution. We can narrow down the process of so�ware

development to:

1. participation by submi�ing source code, and

6

economic success of a project is not explained in detail, since it is not subject of the study

5

2. taking part on discussions and support channels
7

We can regard 1.) as technological and 2.) as social contribution. Social contribution can be pro-

ceeded in submi�ing and discussing ideas or solving problems on forum threads. �us we should

be able to derive a measure of success by these two participation possibilities.

We can request di�erent social interactions to measure the social success of projects through meta

data which will be explained in detail in chapter 3.4.

2.4 Open Source So�ware and Free So�ware Licenses

�e widely used term ”Open Source” must be distinguished in ”free so�ware” and ”open source

so�ware”. �e term ”free” means zero, as in free of charge and free of defects (Licensing (2004)). �e

term also guarantees the freedom to run, copy, distribute, study, change and improve the so�ware

(Foundation (2016)). �us, free so�ware must be OS, otherwise you are not able to study and change

the so�ware. Whereas the term ”Open Source” just implies that you are able to read the source code

but without necessarily the previous mentioned rights to distribute, run and change the so�ware

(Stallman (2014)).

�ree groups of OS licenses are available (Laurent (2004)): restricted, less restrictive, more permissive

and very permissive (see chapter 3.9 for details). Altogether having 10 di�erent licenses:

• �e MIT (or X) License

• �e BSD License

• �e Apache License v1.1 and v2.0

• �e Academic Free License

• GNU General Public License

• GNU Lesser General Public License

• �e Mozilla Public License 1.1 / MPL 1.1

• �e Q Public License

• Artistic License (Perl)

• Creative Commons Licenses

Each license describes speci�c ideas and rules of contribution, usage, copyright and copyle�.

Regarding to so�ware licenses, copyle� ”grants everyone the right to use, modify and distribute the

program on the condition that the licensee also grants similar rights over the modi�cations that

was made” (Mustonen, 2003, p.101). As Stallmann (2015) states, the copyle� in OS license keeps the

freedom of the initial so�ware project for distribution.

7

sometimes also called interaction tools

6

According to Black Duck (2015) nowadays the following 3 most used licenses in OS projects are:

• MIT (25%)

• Gnu General Public License (GPL) 2.0 (22%)

• Apache License 2.0 (16%)

�e distribution is close in line with Bonaccorsi and Rossi Lamastra (2003), where copyle� licenses in

the OS community are dominant but preferred to be mixed (dual-licensing) with other non-copyle�

(i.e. more permissive) licenses. �is is used by companies to achieve competitive advantages and

/ or to protect (patented) intellectual property (IP) by keeping parts of the source code closed (e.g.

Google and Oracle on Android: Amadeo (2013); Gal (2016); Kuhn (2016)).

In the following we will pool ”free open source so�ware” (FOSS) and ”open source so�ware” to OS

(Open Source) and OSS (Open Source So�ware) since the subject of the study is the contribution

of �rm employees and external developers rather than the philosophy and legal aspects of so�ware

distribution. �e considered so�ware projects di�er in their licenses regarding to their �eld of ap-

plication, company philosophy and long-term strategy. �e segmentation of �rms’ licenses will be

considered in chapter 3.9 on page 28.

2.5 Open Source So�ware as Public Good

OSS in this context must permit non-exclusive commercial exploitation of the licensed work, make

the work’s source code available and must permit the creation of derivative works from the original

work (Laurent (2004)). OS licenses must allow to read, modify, execute and distribute the so�ware

which creates a public good. �us, OSS is a public good with non-revival and to some extend non-

excludable a�ributes ((Eilhard, 2009, p.6), Lerner and Triole (2000)).

As mentioned before, the introduced licenses do di�er in terms of their intention of usage and mod-

i�cation. �e OS licenses ensure that the rules of the OS community apply on every user of the

OSS (Eilhard (2010)). Because OSS is a non-exclusive and non-excludable public good, everyone has

the right to use the so�ware. �us, many actors can bene�t by the contribution from a few actors.

As stated by the private-collective model of innovation (Hippel and Krogh (2003)) economic parties

invest private resources to produce a public good. �e private investment expects a return of in-

vestment. For that, knowledge spillovers will tried to be avoided and society may grant access with

patents, copyrights and trade secrets (Osterloh and Rota (2007)). On the other side the collective ac-

tion model applies to the production of a public good by having a central agent (e.g. a government

subsidy program) to produce a public good.

7

2.6 Open Source Business Models

In the last three decades OSS has shi�ed from the hacker scene to the mainstream (Fitzgerald (2006))

and became more relevant as business opportunity for companies.

Because OSS can be regarded as a public good, companies which business rely on their initiated OS

projects have to �nd a way to work pro�table. According to Popp and Meyer (2010) the following

possibilities exist:

• leverage the OS community as supplier, development, sales, maintenance or support resource

• sell so�ware which is based on the OSS

• provide services for the OSS to the client

As Example: �e Android operating system was initiated by Google in 2008 (Dan Morrill (2008))

and is one example of successful initiated OS projects by a company. According to Bloomberg and

Reuters (Joel Rosenbla� (2016); Steve Trousdale (2016)) Android generated 31 Billion USD revenues

for Google since it’s launch. As stated in table 1, Android is by far the most installed operating

system on shipped devices in 2015. �is example demonstrates that �rm’s initiated OS projects

can generate relevant revenue - even for larger companies. Beside that, Android is developed by a

community of �rm employed developers and external developers
8
.

Operating System 2014 2015 2016

1 Android 1,156,111 1,156,111 1,156,111

2 iOS / MacOS 262,615 262,615 262,615

3 Windows 333,017 333,017 333,017

4 Others 626,358 626,358 626,358

Table 1: Share of Operating Systems on worldwide shipped devices (thousands of units); Shipments

include mobile phones, ultramobiles (including tablets) and PCs
10

2.7 Open Source and So�ware as a Service (SaS)

Many companies are implementing OSS as a part of their so�ware service nowadays. �is means,

so�ware services are usually o�ered through a platform (which is the internet by default). �e terms

So�ware as Service (SaS), Cloud Services and Cloud Computing imply that the service is only available

8 Android projects are not part of the study since Android is not classi�ed as commercial organization. However, the

share on core modules by �rm employed developers (i.e. Google developers) is roughly estimated between 74 % - 89 %

(see https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/examples/android ratios.csv

for detailed information)

10

Source: Gartner (2015)

8

https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/examples/android_ratios.csv

Figure 1: Revenue of Google in Mio. USD, © 2016 Statista, Source: http://de.statista.com/

statistik/daten/studie/154635/umfrage/umsatz-von-google-quartalszahlen/

via remote rather than installed as local so�ware. �us, SaS is rather rented than licensed (Buxmann

et al. (2008)) and, compared with traditional locally installed so�ware, pro�t is generated by leasing

the so�ware and service to the user.

�e range of open and closed source code behind so�ware services di�ers widely. Server side com-

ponents and frontend modules o�en rely on OSS technologies
11

. Because most SaS-APIs only allow

receiving and returning (processed) users’ data, those closed server-side processes make studying

executed code hard or even impossible. �us, the user is neither able to determine what the so�-

ware really does nor able to change (and redistribute) it (Richard M. Stallman (2010)). �erefore, this

approach is widely against the initial thoughts of free so�ware.

Moreover, cloud computing aims to force people to buy lock-in systems that will increase costs over

time (Bobbie Johnson (2008)). To �ll the gap of lacking copyle� on SaS, the free so�ware foundation

published the GNU A�ero GPL in 2007 (Foundation (2007)) which demands a download link to the

source code on hosted services running the a�ected so�ware.

Beyond closed-source SaS-providers other companies likeGitLab (Hall (2015)) or ownCloud (Vaughan-

Nichols (2014)) publish their entire server- and client-side so�ware as OS. Pro�t is generated by pro-

viding enterprise editions (Hall (2015); ownCloud (2016); (Van Baarsen, 2014, p.148))
12

for instance.

11

for example: many services using OS databases like MariaDB or PostgreSQL for data storage

12

the enterprise edition does not necessarily di�er in features rather than then in support features for the service

itself

9

http://de.statista.com/statistik/daten/studie/154635/umfrage/umsatz-von-google-quartalszahlen/
http://de.statista.com/statistik/daten/studie/154635/umfrage/umsatz-von-google-quartalszahlen/

Other companies publish and maintain speci�c libraries or components as OS
13

. �e la�er is com-

mon practice for (larger) technology companies like Google, Microso�, facebook or Amazon.

2.8 Open Source and Open Innovation

OSS can be regarded as process innovation (Bonaccorsi and Rossi (2003)) with a connection to open

innovation. Information to solve a problem can be sticky and opening innovation can help to solve

the problem of sticky information (Von Hippel (1994)). Open Innovation implies that valuable ideas

may come from the inside or outside of a company (Chesbrough, 2006, p.43f) and let to the assump-

tion that exploration and exploitation of internal and external ideas lead to be�er innovation. Using

the term ”openness” according to Chesbrough (2003), ”open innovation is a paradigm that assumes

that �rms can and should use external ideas as well as internal ideas, and internal and external

paths to market, as �rms look to advance their technology”. �us, companies can turn (technology

regarded) ideas from inside and outside the company to pro�t (Dahlander and Gann (2010)).

For the need of companies to connect ”Open Innovation” with ”Open Source”, Dahlander and Gann

(2010) give the following reasons:

• Social and economic changes in working pa�erns:

- today employees are seeking more o�en portfolio careers than a single employer for

lifetime

- OS commitment builds a be�er portfolio

• Globalization:

- allows increasing division of labor

- enables working on distributed channels on source code

• Intellectual property rights (IPR), venture capital (VC) and technology standards allow for

organization to trade ideas

• So�ware and technology:

- changes the minimum e�cient scale of production

- allows new ways to collaborate

- coordinates across geographical distances

As follows, Open Source and Open Innovation are related terms since programming is a kind of

innovation by creating new products (so�ware) to solve (technical) problems.

13

for example: facebook initiated React (Occhino (2015)) and uses React Native (Facebook (2015)) in multiple produc-

tion apps (Facebook (2016))

10

2.9 Open Source Collaboration of Firms with external Developers

As stated in chapter 2.8, OS developers are innovating users (Von Hippel (2005)): they evaluate,

change and improve source code for their own purpose and solve problems by creating so�ware

for speci�c use cases. Usually they publish their innovations without claiming intellectual property

rights and are driven by extrinsic and intrinsic motivation (Hertel et al. (2003); Hars and Ou (2001);

Lakhani et al. (2002)).

Firms’ investment in OS so�ware and communities di�ers from the interest of (external) OS devel-

opers since �rms expect a return of investment. �eir intention of investment is mainly driven by

economic, technical and strategic reasons (Wichmann (2002); Henkel (2006)). If �rms acting in OS

sections, con�icts with OS community members may occur due to di�erent interests of contribution

(see Koçulu (2016) as example), license permissions (Hars and Ou (2001)) and commercial intention.

Forms of commitment by �rms can be participating in so�ware development, communication chan-

nels or in general by creating network e�ects through an ”architecture of participation” (O’reilly,

2007, p.22).

But why do �rms initiate OS projects and do maintain them even if they do not belong to their core

business?

West and Gallagher identi�ed the following bene�ts when organizations do sponsor OS projects

(West and Gallagher, 2006, p.13):

• helping to establish their technology as de facto standards (reduces the likelihood of having

to re-implement other products to conform to competing standards)

• a�racting improvements and complements that make the technology more a�ractive

• together, the innovation and complements enable the sale of related products

• generating mindshare and goodwill with the same audience that includes the potential cus-

tomers for these related products

As Tsay et al. (2014) found out, contributions on GitHub by submi�ers with high status in the com-

munity and a stronger social connection to the project have a higher chance to get accepted. Besides,

discussions of contributions have a social and technological factor. Contributions on established

projects are harder to be accepted (Tsay et al. (2014)) which may occur trough higher communi-

cation costs. In addition, employed developers who work for longer periods on �rms’ initiated OS

projects have a higher reputation in the community, more power of control on contributions and

larger in�uence of project’s (technical) design and advancement.

Consequently, �rms may receive indirect (nonmonetary) return of investments if they initiate and

maintain projects that are not primary relevant for (monetary) revenue. Be�er reputation and es-

11

tablishment of so�ware technology with more success are such returns as well as coming across

new potential employees
14

.

2.10 GitHub as Host for observed Projects

GitHub is the largest social coding repository and hosts over 35 Mio. repositories by 14 Mio. people

(GitHub (2016b); Metz (2015)). It was successfully used as data source in several other studies before

(Vasilescu et al. (2013); Terrell J (2016); Dabbish et al. (2012); �ung et al. (2013)) and allows to query

project related metadata. Moreover, all popular �rms do publish their OS projects mainly on GitHub

because it o�ers extended enterprise support (Holman (2011))
15

beside it’s popularity for free and

public accessible projects.

2.11 Increasing commitment of Companies to Open Source

2.11.1 As an example of developing a commonapproach: Microso� andOpen Source

Between the late 90s and the beginning of the century Microso� was widely known for it’s rigorous

distaste towards OS licenses, OSS and especially theGNU/Linux system. At this time Microso�’s core

product and cash cow was Microso�’s operating system Windows (MS Windows for clients & MS

Windows Server) and Microso� O�ce (Reifman, 2007, p.2). In other words, Microso� got threatened

by OSS. �is was regarding particular Linux as client and server operating system and OpenO�ce

(nowadays widely known as fork LibreO�ce). �is may be one of the reasons why former Microso�

CEO Steve Ballmer regards Linux (and it’s GPL license) in 2001 as cancer that a�aches itself in an

intellectual property sense to everything it touches (Greene (2001)).

Since user interaction with the operating system shi�ed from local machines (i.e. locally installed

so�ware on stationary computers) to the internet (using so�ware services in the web browser and

on mobile devices, as described in chapter 2.7), Microso� couldn’t defend its dominant position and

lost market shares in the last decade (Weinberger (2015)).

By failing to defend the dominant position of their proprietary so�ware, Microso� started to change

their strategy over the last decade and increased their commitment in OSS. As Sam Ramji already

stated in 2008 (Foley (2008)), Microso� has realized to include Linux (i.e. other OSS and OS based

services) as a vertical product integration in a heterogeneous environment on top of Windows. �is

strategy of mixing OSS with proprietary so�ware (Hanna (2010)) is common practice in technology

companies nowadays.

14

external developers are potential employees since they have project related knowledge and matching skills

15

against payment of a fee, https://enterprise.github.com/features

12

https://enterprise.github.com/features

In 2014Microso� announced to publish their programming language and enterprise framework .NET

as open source (Microso� (2014)). �is step was just one of their latest upcoming OS commitments

and facing towards the OS community (see Seth (2016) as one of the latest examples).

Finally, Microso� moved in 2015 most of its OS projects from codeplex (their own OS hosting service)

to GitHub (Uhlenhuth (2015)). With this step Microso� tries to reach the vibrant OS community (of

GitHub) and indicates that they want to be an active part of it. Currently, Microso�’s GitHub account

contains more than 370 projects with 1,138 organizational developer pro�les (external developers

are excluded)
16

.

2.11.2 GitHub’s Atom Editor and Microso�’s Visual Studio Code as example for technol-

ogy exchange between �rms and collaboration with the OS community

In 2011 GitHub Inc. 17
employee Corey Johnson and GitHub founder Chris Wanstrath started building

the Atom editor (herea�er referred to as Atom) as closed source project inside the GitHub company

(Ben Ogle (2016)). GitHub conceived the Atom in February 2014 to the public (Sobo (2014b)). In May

2015 they published its source code (Sobo (2014a)) under the MIT License. �e idea of the Atom is

to be a ”zero-compromise combination of hackability and usability” and therefore a rival so�ware

product to other closed source / commercial editors like Sublime, Apple’s XCode and Microso�’s

Visual Studio. �e feedback of the OS community was widely positive and Atom gained quickly

considerable a�ention (Serdar Yegulalp (2015) and Dohm (2016)).

One key feature of Atom is its modularity, which allows customization through ”packages” (i.e. ”plu-

gins”). Each plugin is customized for speci�c so�ware development needs. �e format of packages

and themes was previously introduced by Sublime, which holds a large repository of plugins. �us,

all Sublime plugins can easily be converted to Atom 18
. In addition, the introduction of apm (Atom

PackageManager 19
as central so�ware provider for those plugins enabled a new so�ware ecosystem

for the editor and accelerated the acceptance of converting, building and deploying new plugins for

Atom by the community.

A year a�er the initial release of Atom, Microso� announced its free and open source editor Visual

Studio Code (VSC) (Frederic Lardinois (2015)). VSC is a code editor with similar look-and-feel, fea-

tures and ideas of Atom, but initiated by Microso�. Moreover, VSC is based on Electron (GitHub

16

Retrieved 9
th

January 2016

17

to ”distinguish” between the company and the community, we will use GitHub Inc. for the company; but the tran-

sition is seamless sometimes

18 https://discuss.atom.io/t/convert-sublime-grammar-to-atom-grammar/14843
19 https://github.com/atom/apm
20

Source: https://atom.io/packages, https://packagecontrol.io/stats, http://colorsublime.com

13

https://discuss.atom.io/t/convert-sublime-grammar-to-atom-grammar/14843
https://github.com/atom/apm
https://atom.io/packages
https://packagecontrol.io/stats
http://colorsublime.com

�emes Packages Users Authors Downloads

Atom 1,008 3,496 - - 32,79M

Sublime 295 3,426 4,6M 2,477 -

Table 2: Available Plugins for Atom Editor and Sublime Editor ; Retrieved on: 21
st

January 2016
20

(2016a)) and React - both are OS technologies by GitHub Inc. and facebook respectively and core

technologies of Atom as well.

�is makes VSC to a rival product with the potential to substitute Atom. Using Electron and some

other core libraries as foundation, VSC guarantees interoperability of Atom’s plugins on its editor.

In November 2015 Microso� �nally published VSC as open source likewise (Microso� (2015)).

GitHub Inc. and Microso� are aware that the editor gets only established with a variety of plugins

(see table 3.16) and with an active community. �e reason is that establishing so�ware standards is

to some degree a Winner-Take-All market. Once a standard is established in the community (here

an editor with a speci�c API and package format) the development of ”plugins” will be successful,

too.

�is example demonstrates how two �rms published initially closed source developed so�ware as

open source: Atom (GitHub Inc.) and VSCode (Microso�). Both editors are heavily using OS libraries

as technical foundation.

Altogether, Microso�’s editor is a good example of

• using OS technology of competitors (GitHub Inc., facebook and Instagram)

• as foundation to build OSS for the community

• with plugins and code contribution by the community and developers by competitors

Interpretation: �e reason why both �rms decided to publish their projects as open source may be

that the OS developers are their target customers (Sobo (2014b)), community members and potential

employees. By providing technologies for the community, both �rms will improve their reputation

in the developer community. Furthermore, upcoming projects will be easier accepted by external

developers, more likely successful and establishing so�ware technology in future might be more

feasible in a smaller amount of time.

A further analysis of ”Atom” and ”VSC” (”Microso�” and ”GitHub Inc.” respectively) can be found in

chapter 3.16 on page 37

14

2.12 Forms of Participation on GitHub Projects

ProjectCode Contribution Issues

Firm
empl.

Developer

Ext.
Developer

Firm
empl.

Developer

Ext.
Developer

Comments

.

.

.

.

.

.

.

.

.

Technical Commitment Social Commitment

Forks Stars Subscribers

Figure 2: Technical and social Commitment in GitHub Projects

GitHub allows direct and indirect participation. �is implies that every user can participate with

minimum action (indirect) and active contribution (direct).

�e following technical and social participations are possible:

• Code Contribution (direct)

• Creating Issues (direct)

• Participation by commenting on Issues (direct)

• Fork, Subscribe and Star project (indirect)

Use and interpretation of these a�ributes will be explained in chapter 3.4 on page 23.

15

2.13 Linear and Logistic Regression Models

�e empirical analysis uses Linear & Logistic Regression Models. According to Seber and Lee we can

describe the linear models of the study as follows (Seber and Lee, 2012, p.35):

lmj : yji
= βj0 + βjixji + · · ·+ εji (1)

x : explanatory variable

ε : �uctuation or error

β : unknown parameter

lm : linear model

∀i ∈ observations

∀j ∈ linear regression models

�e independent and dependent variables will be di�erent regarding to model assumptions. In par-

ticular Ratio (share of contribution by internal developers) and Age will be set as independent vari-

able, share of contribution by external developers and Top Project set as dependent variable. Firms and

Programming Languages will be used as dummy variables in some models.

Because Top Project is ∈ {0, 1}, the logit model is used in this case (Hilbe, 2009, p.23):

µji =
1

1 + e−xjiβji
(2)

µ : ��ed value

∀i ∈ observations

∀j ∈ logistic regression models

2.14 Fitting Linear Mixed-E�ects Models

To consider e�ects within Firms and e�ects within Programming Languages some analyses will be

handled additionally by Fi�ing Linear Mixed-E�ects Models (Bates et al., 2015, p.13):
21

21

as mentioned in (Bates et al., 2015, p.1), ”mixed e�ects” denotes a model that incorporates both �xed- and random-

e�ects terms

16

ηj = Xβj + Zγj + εj (3)

η : known vector

γ : unknown vector of random e�ects

β : unknown vector of �xed e�ects

ε : unknown vector of random errors

∀j ∈ linear mixed-e�ects models

17

2.15 Hypotheses

Derived from motivation, theory and previous studies
22

we formulate the following hypotheses:

H 1 Firm employees’ participation a�ects the participation of external developers

H 1.1 If �rm employees contribute source code more o�en, external developers do as well

H 1.2 If �rm employees participate more o�en on issue threads, external developers do as

well

H 2 Firm employees’ participation (in the beginning) a�ects the (later) success of �rm-initiated

open source projects

H 2.1 If �rm employees contribute source code more o�en in the beginning, the project gets

more successful

H 3 If �rm employees’ contribution share is higher overall the more likely the project is popular

�e analysis will contain code contribution (technical commitment) and participation on issues and

comments on issues (social commitment)
23

. Contribution will be measured with a ”standardized

contribution share” in respect of (social) success metrics and relations between �rm employed de-

velopers and external developers. All hypotheses will be veri�ed with �rms’ publicly available OS

projects on GitHub.

22

Hill and Birkinshaw (2009); Dahlander and Piezunka (2014); Piezunka and Dahlander (2013); Dahlander and Mag-

nusson (2005); Alexy et al. (2012); Tsay et al. (2014); West and Gallagher (2006); Krishnamurthy et al. (2016)

23

whereby issue participation can also be technical in some cases

18

3 Data

In the following chapter, the collection, processing and validation of the relevant data will be ex-

plained. �e empirical data is collected from public projects on GitHub until February 2016
24

.

Repositories’ related activity data is analyzed from 2011 to 2015.

Beside the selection of languages (see chapter 3.2) and �rms (see chapter 3.6) all analyzed observa-

tions are un�ltered
25

and contain the full available range of public available �rms’ OS projects.

Git is an OS distributed version control system. It is published and developed by the Linux devel-

opment community (including Linus Torvalds, the creator of Linux) since 2005 (Chacon and Straub,

2014, p.31).

3.1 Data Sources and Open Data Approach

All analyzed data is collected from the following public and free available data sources:

GitHub API: Project data, issues and issue comments

Git repository: Code contribution

Glassdoor API: 26
Firm and employee’s ratings

GitHub Archive: 27
Time-referenced data for user events (time period 2011 - 2015)

GHTorrent Project: 28
User data (email, location, company and full-name)

LinkedIn Websearch: Manual classi�cation for developer employments

External data is received as JSON �les (Bray (2014)) and converted to the CSV format (Shafranovich

(2005)) for be�er processing possibilities in R. All data can be downloaded and observed through a

git repository
29

.

24

collected during the period from December 2015 to February 2016

25

unless stated otherwise

26 https://www.glassdoor.com/developer/index.htm
27 https://www.githubarchive.org/
28 http://ghtorrent.org/
29 https://git.zeitpulse.com/philipp/masterthesis-data/tree/master

19

https://www.glassdoor.com/developer/index.htm
https://www.githubarchive.org/
http://ghtorrent.org/
https://git.zeitpulse.com/philipp/masterthesis-data/tree/master

3.2 Selection of Programming Languages

To specify a proper selection of relevant OS projects we need to de�ne a list of popular programming

languages.

�e most used programming languages on GitHub 30
are listed in table 3 (GitHub and La (2015)). �e

�gures re�ect the overall ranking of programming languages in OS (Cade Metz (2015)) and integrates

close enough to the TIOBE index (TIOBE (2015)) and Programming languages used in most popular

websites on Wikipedia (2015). Excluded languages are Shell and CSS since Shell is a UNIX command

line interpreter and neither used for building regular web services nor for building so�ware in the

proper sense
31

and CSS is a markup language and not a programming language.

�e replacement of Shell and CSS with the GO language seems to be reasonable (see Paul Krill (2015),

Schaaf (2014) and Finnegan (2015) for possible reasons). �e selection excludes the ”rising stars” of

OS programing languages Scala, Hack and Swi� since the popularity, spreading and age of those

languages is too li�le for the observation.

�e following 10 languages (in alphabetically order, grouped by programming language family) are

�nally selected:

• C, C#, C++, Objective-C

• Go

• Java

• JavaScript

• PHP

• Python

• Ruby

�e exact number of projects according to Stars and Forks can be looked up in table 3 and �gure 13

respectively.

�e usage of programming languages in projects di�er between �rms. Some �rms promote their

own programming languages (e.g. Google uses Go / Microso� uses C# more o�en than usual) or

use speci�c languages according to their �eld of application (e.g. GitHub Inc. uses Ruby). Figure 3

and 4 illustrate the usage of the 10 selected programming languages in ”Top Projects” and ”Residual

Projects”
32

according to �rms.

30 Visited 12.01.2016: https://github.com/search?o=desc&q=stars:%3C1
31 http://www.rpi.edu/dept/arc/training/shell/slides.pdf
32

terms will explained on page 25

20

https://github.com/search?o=desc&q=stars:%3C1
http://www.rpi.edu/dept/arc/training/shell/slides.pdf

id−Software
applidium

ValveSoftware
apple

cesanta
bitly

Yalantis
twilio

douban
airbnb

ParsePlatform
stripe

mongodb
etsy

docker
xamarin
dropbox

aws
github

alibaba
hashicorp
cloudera
linkedin

twitter
spotify

Yelp
googlesamples

KnpLabs
elastic

Shopify
Netflix
paypal

thoughtbot
square
Azure

facebook
Automattic

yahoo
adafruit
heroku

Microsoft
google

0 100 200
Number of Repositories

Programming
Language

C

C#

C++

Go

Java

JavaScript

Objective−C

PHP

Python

Ruby

Figure 3: OS Projects of Firms and the Programming Languages they are wri�en in

Programming language Stars Forks

JavaScript 252891 134294

Python 132995 74924

Java 115249 83361

Ruby 105547 55153

PHP 97112 57332

C 59920 36506

C++ 53706 33105

Objective-C 44734 24845

C# 35859 22157

Shell 36874 -

CSS - 21637

Sum 934887 733789

Table 3: Programming Languages with projects’ Stars and Forks (Retrieved: 12.10.2016)

21

Residual Projects Top Projects

0

200

400

600

N
um

be
r

of
 R

ep
os

ito
rie

s

Programming
Language

C

C#

C++

Go

Java

JavaScript

Objective−C

PHP

Python

Ruby

Figure 4: Programming Languages which are used in Top Projects and Residual Projects.

22

3.3 Restrictions of Data Collections

All measurements and analyses are made under the following restriction: GitHub repositories’ social

data (stargazers, forks, contributors, . . .) can only be measured with the actual values, i.e. cross-

sectional data. For that reason, these a�ributes are query able through the GitHub API (GitHub

(2015b)) with the possibility of sorting. However, querying and analyzing time series of GitHub

event data is possible through the GitHubArchive (see Grigorik (2012); Brian Doll (2012); listing

1) having events with the verbs watch (mostly called subscribing) and fork. As mentioned in the

beginning, the available time period of user activities is from 2011 to 2015
33

.

3.4 Social-Success-Metrics of git Repositories

A git repository (sometimes also called git project or git repo, where git is an optional term) provides

the following statistics by default:

• date and time of commits (commits are code contributions)

• name and email of the author (authors are developers)

• time zone location of the contributor (via the date-time property)

• code changes and action
34

A GitHub project has the following social metrics (terms will be described in the paragraph be-

low):

• Stars / Stargazers

• Subscribers (sometimes also called ”Watchers”)

• Forks

• Open and closed Issues

Finally, we get the following metrics of interest:

• Number of Stargazers, Subscribers and Forks

• Number of Code Commits

• Number of Contributors

• Number of Issues and Comments on Issues

Stargazers 35
are GitHub users / developers who mark a project with a star (GitHub (2015c)), similar

to the ordinary ”like bu�on” on facebook. �e reason may be to mark this as one of your favorite

projects or to show the initiator your interest in the project or idea.

33

GitHub itself exists since 2007 (Weis (2014))

34

an action may be a regular code commit, code merge or basic �le operation (like rename, delete, copy or create �le)

35

derived ”action” is Star

23

Fork is a copy / clone of a git project (GitHub (2014)) containing all previous code contributions

until the moment of the fork event. Projects are forked either to collaborate with the origin project

or to be resumed as an independent project
36

. �e number of forks doesn’t explain necessarily the

activity of contributors nor the popularity. If you participate on a GitHub project by commi�ing

code (called pull request 37
) with your GitHub account, this project will be forked into your account

by default. �e clone and fork actions are fundamental ideas of the decentralized approach of git

(Loeliger (2006)).

Subscribers are users who get noti�ed on important project activities (GitHub (2015d)). �e term

is similar to subscribing on facebook or following on twi�er. Subscribing may be considered as the

most important indicator of active interest in projects (beside code contribution and issue partici-

pation).

Issues are communication threads (GitHub and Neath (2007)). Every issue can be open or closed

and labeled as feature request, bug report, idea or code proposal for instance. Issue threads are an

exclusive collaboration feature of GitHub
38

and not implemented in git itself.

In terms of ”Forms of Participation” (see chapter 2.12 and �gure 2 respectively) we can roughly

classify this (direct and indirect) user actions from ”lower participation / activity” to ”higher partic-

ipation / acitivity”. Stars and Forks can be interpreted as the lowest participation level because they

do not in�uence projects’ progress directly (everyone can fork and star a project without any direct

”consequences”). Whereas subscribing is more active (but still indirect), because it provides constant

updates of the current project activities to the subscribing user.

�e impact of internal (and external) contribution on these levels of participation has to be con-

sidered speci�cally. In general, higher-active responses are more important than lower-passive re-

sponses.

36 LibreO�ce is a fork of OpenO�ce which is continuing as independent project for instance

37 https://help.github.com/articles/using-pull-requests/
38 https://guides.github.com/features/issues/

24

https://help.github.com/articles/using-pull-requests/
https://guides.github.com/features/issues/

3.5 Projects’ Data Enquiry

Due to GitHub API limitations (GitHub (2015a)) we are only able to query 1000 results for each

language. As mentioned before, only �rm’s initiated projects for the 10 most famous programming

languages are interesting for the observation.

By querying the most popular 1000 repositories for each of the programming languages
39

we �nally

receive 10,000 repositories
40

from 2858 di�erent organizations
41

, sorted descending by listed ”Top

Repositories” for each organization
42

(see table 20 on page 72).

�is results in 2,858 organizations having 78,055 public repositories (see table 4 for details
43

). By

selecting the most relevant organizations
44

we get 113 (share of 3.95 %) relevant organizations
45

.

We can classify �nally 58 relevant commercial �rms (see table 22 and chapter 3.6).

Evidently, closer examination of the data shows that nearly every commercial successful �rm in the

technology area has a public GitHub pro�le (see table 21 on page 73).

We classify Repositories as:

Top Repositories (sometimes also called Top Projects), which were found the �rst 1,000 rank search

result

Residual Repositories are the remaining amount of repositories by each �rm

All �rms’ projects that are classi�ed in one of the 10 chosen programming languages and are not

tagged as ”fork” are relevant
46

.

39

for each language: https://api.github.com/search/repositories?q=language:$ProgrammingLanguage$&

sort=stars&order=desc&per page=100&page=1...10, queried on 19.1.2016

40 https://git.zeitpulse.com/philipp/masterthesis-data/tree/master/apidata/top repos by language
41 https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/organizations.csv
42

in the following top repositories or top projects are all projects listed in the top 1,000 search matches

43 https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/apidata/organizations top

repos restructured.json
44

i.e. having at least 4 di�erent projects in the search results of most popular projects on all 10 programming languages

45

data source: https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/repositories

details.csv
46

Remark: Unfortunately, not all projects can be classi�ed absolutely as fork and not fork since not all projects are

tagged as such on GitHub itself

25

https://api.github.com/search/repositories?q=language:$ProgrammingLanguage$&sort=stars&order=desc&per_page=100&page=1...10
https://api.github.com/search/repositories?q=language:$ProgrammingLanguage$&sort=stars&order=desc&per_page=100&page=1...10
https://git.zeitpulse.com/philipp/masterthesis-data/tree/master/apidata/top_repos_by_language
https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/organizations.csv
https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/apidata/organizations_top_repos_restructured.json
https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/apidata/organizations_top_repos_restructured.json
https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/repositories_details.csv
https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/repositories_details.csv

Popular / Top Repositories: 10,000

Repositories by Organizations: 78,055

Organizations: 2,858

Organizations with relevant Number of Top Repositories: 113

Commercial Organizations: 58

Share of relevant Organizations: 3.954 %

Share of observed Organizations: 2.03 % (51.33 %)

Table 4: Top Repositories for selected Programming Languages on GitHub. ”Share of observed Or-

ganizations” are �nally classi�ed commercial �rms (selection criterions will be explained in chapter

3.6)

26

3.6 Firms are relevant commercial Organizations

A �rm is relevant for the study, if

• it is a commercial organization

• uses at least one of its projects actively in their business

• it contributes source code to their own projects and to other OS projects

• it holds and uses a global web domain
47

�e selection was done manually by evaluating the form of company, activity with employed de-

velopers and �rms’ business activity. Since the classi�cation of commercial activity is qualitative,

it is also based on ratings by employees on Glassdoor
48 49

, which will be introduced in chapter

3.15.

We will evaluate the repositories of these �rms
50

and compare participation of �rm employed and

external developers.

�e assessment of which organization is commercial and builds a business on its OS projects follows

the assumption that:

• most projects are used by the �rm in commercial context (like docker, aws …)

• the �rm o�ers paid services for some of its project (like chef, Microso�, …)

• the �rm acts commercial - even the OS projects and their service is available for zero costs

(like GitHub, facebook …)

3.7 Structure of a git Project

A git repository can roughly be described with the following a�ributes (Loeliger and McCullough,

2012, p. 32):

• commits, tags and merges

• branches

• trees (not relevant here)

• �les / blobs (not relevant here)

A detailed explanation of those a�ributes is not necessary because only commits and branches are

relevant for the study and will be explained in the following chapters.

47

an actively used web domain is important to classify �rm employed and external developers

48 https://www.glassdoor.com/
49 https://git.zeitpulse.com/philipp/masterthesis-data/tree/master/apidata/glassdoor/employers
50 https://git.zeitpulse.com/philipp/masterthesis-data/blob/master/csv/repositories.csv

27

https://www.glassdoor.com/
https://git.zeitpulse.com/philipp/masterthesis-data/tree/master/apidata/glassdoor/employers
https://git.zeitpulse.com/philipp/masterthesis-data/blob/master/csv/repositories.csv

3.8 Branches of Interest

Each git repository contains di�erent branches. Every branch can be a di�erent working subtree

(i.e. source code environment) of a project. We will only inspect the default branch of each project

which is in most cases the master branch. �e master branch is by convention the o�cial branch

containing all �nally submi�ed and accepted code of a project (Loeliger and McCullough, 2012,

p. 89-90). Some projects have di�erent default branches (production branch for instance) and will be

scope of the observation if it is tagged as such on GitHub.

3.9 Firms’ License Usage

Which kind of licenses �rms are using might re�ect their strategic and projects’ commercial long-

term intention respectively.

With the following segmentation (based on Bonaccorsi and Rossi Lamastra (2003)) for the most used

licenses of the observed repositories / �rms, we can describe a spectrum from restrictive to permis-

sive licenses. As �gure 5 illustrates: most �rms use (very) permissive licenses (from green-blue to

magenta) instead of restrictive licenses (red to orange)
51

. �e reason might be simple: Permissive

license avoid problems of the copy-le� idea and enables future commercial (closed source) develop-

ment.

51

which is in line with Bonaccorsi and Rossi Lamastra (2003) and Black Duck (2015)

28

phacility
applidium
Qihoo360

ValveSoftware
apple

id−Software
Flipboard

cesanta
Instagram

bitly
tumblr

Yalantis
douban

Reactive−Extensions
twilio
aws

mongodb
etsy

ParsePlatform
mutualmobile

docker
stripe

venmo
xamarin

hashicorp
airbnb

alibaba
linkedin

KnpLabs
owncloud

Netflix
yhat

dropbox
elastic

intridea
github
spotify

cloudera
twitter
paypal
Azure

facebook
Yelp

sourcegraph
collectiveidea

square
googlesamples

thoughtbot
Shopify

Automattic
chef

yahoo
Microsoft

adafruit
heroku

mapbox
openstack

google

License
Type

agpl 3.0

gpl 2.0

gpl 3.0

cc0 1.0

lgpl 2.1

lgpl 3.0

apache 2.0

epl 1.0

isc

mpl 2.0

ms pl

wtfpl

bsd 2 clause

bsd 3 clause

mit

unlicense

other

unspecified

Figure 5: Most OS projects by �rms do use (very) permissive licenses (from green over blue to

magenta). �e x-axis (caption not in the plot) represents the absolute number of repositories (from

15 - 284 repositories).

0

250

500

750

1000

R
ep

os
ito

rie
s

License

epl 1.0

lgpl 3.0

cc0 1.0

agpl 3.0

bsd 2 clause

gpl 2.0

other

unspecified

apache 2.0

mit

bsd 3 clause

isc

mpl 2.0

gpl 3.0

unlicense

lgpl 2.1

wtfpl

ms pl

Figure 6: Frequency of licenses in GitHub repositories of �rms. Permissive licenses (like Apache,

MIT and BSD) are favored. Unspeci�ed means not categorized (i.e. in most cases proprietary OS

license by �rm). Graphs for Top and Residual Projects in �gure 14 and 15.

29

Strong Copyle� (restrictive)

• GNU A�ero General Public License (agpl 3.0)

• GNU General Public License (gpl 2.0, gpl 3.0)

• Creative Commons CC0 1.0 Universal (cc0 1.0)

• SIL Open Font License (o� 1.1)

Mixed (less restrictive, more permissive)

• GNU Lesser General Public License, Version 2.1 (lgpl 2.1, lgpl 3.0)

• Apache License, Version 2.0 (apache 2.0)

• Eclipse Public License (epl 1.0)

• ISC-Licence (isc)

• Mozilla Public License, version 2.0 (mpl 2.0)

• Microso� Public License (ms pl)

Non-Copyle� (very permissive)

• Do What �e Fuck You Want To Public License (wtfpl)

• BSD licenses (bsd 2 clause, bsd 3 clause)

• �e MIT License (mit)

Uncategorized

Beside that there are also unlicensed projects (i.e. no license on ”purpose”) and license unspeci�ed

projects (i.e. no license detected by GitHub).

3.10 Classi�cation of Developers

We distinguish two groups of participants:

1) Internal Developers (also called �rm employed developers) are developers / users who

• are currently employed at the company of the observed project, or

• were employed at the company of the observed project in the past

2) External Developers are developers / users who

• never worked at the company of the observed project, and / or

• are independent developers / hobbyist programmer

30

3.11 Evaluation and Classi�cation of Commits

A commit represents the participation of a developer. It includes code changes or new code
52

. In the

following, we will regard a commit as a participation activity. We ignore the size of the commit (how

many lines and �les have changed) because measuring code quality by these simple metrics would

be di�cult. According to Stamelos et al. (2002) further specialized so�ware is needed to measure

code quality reliable.

�e number of projects’ valid commits of the selected 58 �rms is 2,951,188. �ese commits are used

in the �nal version of the projects (i.e. they are productive code commits). Commits without a valid

email address
53

are sorted out. As mentioned before, a commit can also be a merge and is taken

into account as well
54

.

�ere are 1,111,384 of �rm employed developers and 1,839,804 of external developers
55

. �us, the

share of �rm employed developers is at least 37.66 % on all observed projects.

To compare the participation of �rm employed and not �rm employed developers, each commit

must be identi�ed by the author’s email address and be assigned to internal (i.e. employed by �rm)

or external (i.e. employed not by �rm of the project). �e selection of �rm employed developers

is quite conservative, because we only regard developers with a �rm e-mail address or developers

which are known to work for the company. Many more developers may work or have been working

for the �rm in the past.

To maximize the classi�cation of �rm employed developers with acceptable e�ort, a whitelist was

generated and checked manually via LinkedIn for the developers with the highest share of partic-

ipation. �e whitelist
56

contains over 550 manually checked developers, everyone with a share of

code contribution from 25 % up to 100 % for a speci�c project.

3.12 Time and Location of Code Contribution

�rough almost 3 Mio. observed commits we can measure a representative frequency of code con-

tribution (see �gures 7, 8, 16 and 17). �e histograms are stacked and not overlaid
57

.

52

detailed code changes can be inspected by git di� $commithash
53

here a valid email address following ABNF with the regular expression

/ˆ[a-zA-Z0-9.!#$%&'*+/=?ˆ_`{|}˜-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$/

Source: http://www.w3.org/TR/html5/forms.html#valid-e-mail-address
54 Merge is an activity of implementing proposed code changes into the (�nal) project

55

for classi�cation see next section

56

can be received as csv �le: https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/

classification/int ext developer classification.csv
57

the total number of commits by not �rm employees is actually higher (see previous section for numbers)

31

http://www.w3.org/TR/html5/forms.html#valid-e-mail-address
https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/classification/int_ext_developer_classification.csv
https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/classification/int_ext_developer_classification.csv

Interpretation: Most of the code contribution takes place between 9:00 and 19:00 with its peak

at 15:00 (see table 8). An interesing observation is that �rm employed developers’ and external

developers’ code contributions frequency is very similar. �e reasons could be:

a) external developers are employed as well (but at another �rm)

b) externals / freelance workers write and commit code in the same time frame because they are

most e�cient in that time frame

c) externals / freelance workers write and commit code in the same time frame because code con-

tribution is a form of collaboration and ”forces” same time frames

According to the manual classi�cation of developers (most of them are or were employed at the

particular �rm) and the fact that code contribution time is similar regarding to the local time, reason

a) seems to be the prime cause: external developers are employed developers of other / rival

�rms.

Beside that, the core hours are in line with independent studies about working hours (see �gure

9). �us, the most e�ective time period for developers seems to be between midday and late a�er-

noon. �e distribution of worldwide code contribution con�rms the leading role of Silicon Valley /

California / Oregon and USA in the �rm managed open source segment (see �gure 7 and 16)

0.0

0.1

0.2

−10 −5 0 5 10 15
Time Zone

Firm Developer
no

yes

Figure 7: Code contributions by �rm employed and external developers over time zones. Assump-

tion: Most code contributions are from Europe (UTC between -1 and +2) and USA / Canada (UTC

between -4 and -8) by considering economicaly most successful countries by longitude (and ignoring

latitude in�uences).

32

0.00

0.05

0.10

0.15

0 5 10 15 20
Hour of Daytime

Firm Developer
no

yes

Figure 8: Code contributions of �rm employed and external developers by local daytime (workdays,

weekend and holidays are included). Most of the code commits are placed between 09:00 - 19:00,

with its peak between 15:00 - 16:00

Figure 9: 2011-2012 Annual Averages (”Computer and Mathematical” (yellow) compared to ”All

Jobs” (green)): �e majority of people are at work from 9:00 to 17:00, with a small break in the middle
of the day for lunch (according to Bui (2014)). Source: BLS, American Time Use Survey; Credit: �octrung

Bui/NPR

33

3.13 Observed Repositories

�e �nal number of observed repositories is 3,419, including 610 top projects and 2,809 residual

projects (see table 5 for further details).

Statistic N Mean St. Dev. Min Max

Age (in days) 3,419 743.790 560.458 0 2,904

Number of Contributors 3,419 17.181 40.053 2 468

Number of Commits 3,419 748.581 8,510.597 2 428,840

Number of Commits by �rm employed developers 3,419 250.875 1,501.224 0 56,624

All Issues count 3,419 20.836 75.842 1 1,884

Closed Issues count 3,419 2.817 18.725 0 706

Open Issues count 3,419 18.019 74.182 0 1,884

Stars 3,419 426.290 1,538.234 0 35,214

Subscribers 3,419 75.221 123.100 1 2,617

Forks 3,419 99.204 378.507 0 10,772

Ratio (share of �rm employed developers) 3,419 0.521 0.348 0.000 1.000

Mean share of Top Repositories 3,419 0.178 0.383 0 1

Table 5: Statistic of observed GitHub Projects

�e number of repositories (i.e. observations) will vary between statistical models
58

.

3.14 �e Role of Developers on Issues

Issues are communication channels for GitHub repositories. GitHub provides data of users who

opened issues and users who participate on issues by commenting / discussing. All comments will

be counted and assigned to �rm employed and external developers
59

.

As mentioned before, issues can:

• be technical (bug reports / source code related)

• include general ideas / feature requests

• be organizational related

Finally, we have 405,163 issues with 1,718,363 comments (6,190 issues and 32,599 issues’ comments

are by �rm employed developers).

58

some are using ”Top Repositories”, ”Residual Repositories”, ”All Repositories” and ”Repositories older than X days”

for instance

59

some models also include a measurement of weighted comments by its content size

34

3.15 Firms’ OS Commitment as Proxy for�ality of Work Environment

To which extend does contribution of �rm employees on �rms’ OS projects re�ect the employer

quality? If employed developers get encouraged by their employer to initiated and contribute on

OS project, do they stay more likely at their current employer or rate their working climate more

positive? If an �rm employed developer is allowed to work on OS projects as part of his work, does it

increase their incentive to be more creative and try out new ideas by themselves? Or do developers

initiate projects to demonstrate and promote a speci�c technology innovation inside a �rm?

�is research question itself would probably �ll another study (see 5.2). But we will observe brie�y

a few data collections regarding to work climate and GitHub activities of �rms. For that, ratings

from employees of their workplace are evaluated. �e data is received from Glassdoor. Ratings of

50 �rms were found
60

but only 14 �rms (see table 23) had enough ratings and enough Top Reposi-

tories (i.e. at least 38 ratings and 10 Top Repositories) to be ”representative” with partly signi�cant

regression results. However, there is a (weak) positive signi�cant relation between the number of

popular OS projects and the rating by the employees (and vice versa) which could be measured by

employees rating their �rm and �rms’ number of popular Open Source projects on GitHub through the

OLS method (see table 6 for details). Interpretation: (a) if a �rm initiates more OS projects, the �rm

is more valuable as employer for developers (b) if a �rm is a good place to work, employees will

more likely initiate OS projects through the �rm.

�us, the numbers of observations / ratings are not representative and might be a promising ap-

proach for further research.

60 https://git.zeitpulse.com/philipp/masterthesis-data/tree/master/apidata/glassdoor/employers

35

https://git.zeitpulse.com/philipp/masterthesis-data/tree/master/apidata/glassdoor/employers

Dependent variable:

Rating OS Projects Ratings count Work-Life-Balance

(1) (2) (3) (4)

Average Ratio Top Projects −0.115 12.263 4,441.273 0.222

(0.226) (21.167) (5,659.478) (0.446)

Average Ratio Residual Projects 0.108 −21.155 −386.364 −0.342

(0.217) (18.723) (5,751.773) (0.410)

Ratings Count 0.00003
∗ −0.002 −0.00004

(0.00001) (0.001) (0.00003)

Rating 74.312
∗∗

17,654.490
∗

1.638
∗∗

(25.873) (8,434.416) (0.486)

Culture and Values 0.634
∗∗∗ −37.375 −13,061.970

∗ −0.769

(0.132) (24.268) (5,587.065) (0.510)

Work-Life-Balance 0.424
∗∗ −42.472

∗∗∗ −7,375.867

(0.126) (9.910) (4,863.693)

Age of Firm on GitHub −0.0001 0.014
∗∗

0.728 0.0003
∗∗

(0.0001) (0.004) (2.016) (0.0001)

OS Projects count 0.008
∗∗ −142.543 −0.019

∗∗∗

(0.003) (104.811) (0.004)

Residual Repos. count −0.001
∗∗

0.152
∗∗∗

26.620 0.003
∗∗∗

(0.0005) (0.018) (15.218) (0.001)

Constant 0.024 −4.067 7,961.749 −0.065

(0.338) (31.831) (7,988.258) (0.665)

Observations 14 14 14 14

R
2

0.985 0.957 0.891 0.955

Adjusted R
2

0.962 0.889 0.718 0.884

Residual Std. Error (df = 5) 0.076 7.202 1,975.574 0.150

F Statistic (df = 8; 5) 41.895
∗∗∗

14.067
∗∗∗

5.135
∗∗

13.407
∗∗∗

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 6: Rating of Work Environment by employees and Firms’ activity on Open Source projects

36

3.16 Microso� and GitHub Inc.: Contribution and Social Success Metrics of Atom
and VSC

Init. by Firm Editor License Stars Subscr. Forks Contrib. Published Op.Issues Commits Ratio

1 GitHub Atom MIT 23,998 1,524 4,094 260 2014 Q2 1,644 27,373 73.63%

2 Microso� VSC MIT 9,884 679 1,205 56 2015 Q2 774 1,909 58.87%

Table 7: Repository Data of Atom and VSC
61

�e time series 10 and 11
62

show the code contribution of GitHub / Microso� employed developers

against external developers. Gold represents code contribution by external developers, Black repre-

sents code contribution by �rm employed developers. Atom was published as open source in May

2015, VSC a half year later in November 2015.

If you compare the basic statistics of the competitors Microso� and GitHub Inc. (see table 17 and 18

on page 68) you can see that Microso� is a ”youngster” on GitHub 63
: Microso� projects have a mean

age of less than 1 year, high share of �rm employed developers (over 68 %) and fewer ”Top Projects”

(18 % of Microso�s’ projects are ”Top Projects”). Whereas GitHub Inc.’s ”Top Project” share is 40

% with a lower share of �rm employed developers (53 %) and older projects (mean age is almost 2

years).

Interpretation: �is basic statistic provides indications of the di�erences between the two compa-

nies GitHub Inc. and Microso�: Microso� is a ”newer” member of the OS community (according to

the age of projects) and tries to gain its reputation (by initial high share of �rm employed develop-

ers) and tries to establish popular projects (share of ”Top Projects”) with the long-range objective to

motivate external developers (i.e. the OS community) to participate on their projects.

61

Retrieved on: 21
st

January 2016 via https://github.com/
62

Retrieved on 18
th

January 2016 via ’git log’

63

the following values are mean values of each �rms’ projects

37

https://github.com/

2012 2013 2014 2015 2016

0
20

0
40

0
60

0
80

0

Index

co
de

 c
on

tr
ib

ut
io

ns

atom

int
ext

Figure 10: Code Contribution of ”Firm employed Developers” (int) and ”External Developers” (ext)

to Atom (GitHub Inc.). Published as open source in May 2015

Nov 15 Dez 01 Dez 15 Jan 01 Jan 15

0
20

40
60

Index

co
de

 c
on

tr
ib

ut
io

ns

vscode

int
ext

Figure 11: Code Contribution of ”Firm employed Developers” (int) and ”External Developers” to

Visual Studio Code (Microso�). Published as open source in November 2015. (time range of plot:

Nov. 2015 - Jan. 2016)

38

4 Analysis

With the information of code commits, GitHub projects’ metrics, issue communication and user

events (over time) we can verify the following hypotheses:

H 1 Firm employees’ participation a�ects the participation of external developers

H 1.1 If �rm employees contribute source code more o�en, external developers do as well

H 1.2 If �rm employees participate more o�en on issue threads, external developers do as

well

H 2 Firm employees’ participation (in the beginning) a�ects the (later) success of �rm-initiated

open source projects

H 2.1 If �rm employees contribute source code more o�en in the beginning, the project gets

more successful

H 3 If �rm employees’ contribution share is higher overall the more likely the project is popular

4.1 Terms and De�nitions

Younger Projects: Projects that are younger than 1 year (<365 days)

Older Projects: Projects that are older than 1 year (>= 365 days)

Top Projects: Projects that were found in the �rst 1000 most popular projects of a programming

language (can be 1 or 0, see below for mathematical de�nition)

Residual Projects Projects that were not found in the 1000 most popular projects for a program-

ming language
64

Ratio Code commit share of �rm employed developers to external developers (normalized value

between 0 and 1)

Ratio =


1 if repository is maintained to 100% by �rm employed developers only

0 if repository is maintained to 0% by �rm developers (i.e. 100% external developers)

∈ (0, 1) else

(4)

Top Project =

1 if is found in search of 1000 most starred projects of the 10 selected Languages

0 else

(5)

64

”Top Projects” and ”Residual Projects” together build the set of relevant projects

39

4.2 Slopes and Dots (on plot �gures)

Yellow-Solid Correlation coe�cient for the in�uence of code commits from �rm employed

developers on external developers (via OLS)

Blue-Dashed Correlation coe�cient for the in�uence of code commits from external devel-

opers on �rm employed developers (via OLS)
65

Grey Dots Number of code contribution by �rm employed developers (x-axis) and external

developers (y-axis)

4.3 H 1: Firm employees’ participation a�ects the participation of external de-
velopers

4.4 H 1.1: If �rm employees contribute source code more o�en, external devel-
opers do as well

4.4.1 H 1.1: Models and Terminology

�e following linear models (using OLS) examine the in�uence of code contribution by �rm em-

ployed developers on external developers and vice versa.

Every project is represented by a dot and plo�ed through number of code contributions by �rm

employed developers (x-axis) against number of code contributions by external developers (y-axis).

�e in�uence of �rm employed developers’ participation (independent) on external developers’ par-

ticipation (dependent) is represented by the solid yellow slope and de�ned in the models 1.1, 1.3, 1.5,

1.7, 1.9, 1.11 and 1.13. Conversely, the in�uence of external developers’ participation (independent)

on �rm employed developers’ participation (dependent) is represented by the dashed blue slope and

de�ned in the models 1.2, 1.4, 1.6, 1.8, 1.10, 1.12 and 1.14. For be�er understanding see plots 27 - 32

66
and regression results i.a. in table 8 (page 41 and page 77�).

int. commits / internal commits: Number of code contributions by �rm employed developers

ext. commits / external commits: Number of code contributions by external developers

See section 4.1 and 4.2 for further explanation of terms, de�nitions and plots.

R code will be used to describe the models
67

since it’s a bit handier to describe than in mathematical

65

actually x- and y-axis must be reverted to illustrate external impact on �rm employed developers, but for the sake

of simplicity blue and yellow slopes share one plot here

66

plot for model 1.12 and 1.13 (internal and external commits on younger Residual Projects) was omi�ed since there

is no signi�cant correlation, as noted in table 26

67

all analyses are made in R; so the models are taken from the source code

40

notation. See listing 3 on page 59 for details.

4.4.2 H 1.1: Plots

See page 125 for plots.

4.4.3 H 1.1: Regression Tables

Additional regression tables can be found in chapter B.3, page 77 - 79 (table 24, 25 and 26).

Dependent variable:

ext. commits int. commits ext. commits int. commits

(1.1.1) (1.1.2) (1.1.3) (1.1.4)

int. commits 0.999
∗∗∗

0.794
∗∗∗

(0.091) (0.040)

ext. commits 0.034
∗∗∗

0.492
∗∗∗

(0.003) (0.025)

Constant 247.010
∗

233.808
∗∗∗

48.746 540.463
∗∗∗

(138.107) (25.282) (141.371) (109.104)

Observations 3,419 3,419 610 610

R
2

0.034 0.034 0.390 0.390

Adjusted R
2

0.034 0.034 0.389 0.389

Residual Std. Error 7,964.959 (df = 3417) 1,475.494 (df = 3417) 3,368.299 (df = 608) 2,651.187 (df = 608)

F Statistic 121.248
∗∗∗

(df = 1; 3417) 121.248
∗∗∗

(df = 1; 3417) 388.882
∗∗∗

(df = 1; 608) 388.882
∗∗∗

(df = 1; 608)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 8: In�uence of internal commits on external commits (and v.v.) on ”All Projects” (Model 1.1.1

- 1.1.2) and ”Top Projects” (Model 1.1.3 - 1.1.4)

41

4.4.4 H 1.1: Results and Interpretation

�e regression results con�rm the hypothesis: 68
If �rm employed developers contribute more

source code, external developers contribute more source code as well.

�e reversed impact (i.e. in�uence of code contributions from external developers on contributions

of �rm employed developers) is also existing - except for (older) top projects - but essentially weaker

in all cases. �e distance between the impact of internal developers on external developers and the

other way round decreases if projects are more popular (i.e. ”Top Projects”)
69

. �is indicates, that

the biggest positive impact of internal developers’ participation on external developers’ participation

is reached in not well-known (and younger) projects.

�enumber of code commits by �rm employed developers have a high positive signi�cant

in�uence on the number of code commits by external developers. �e impact of code com-

mits by external developers on �rm employed developers is also positive, but signi�cant

lower - especially in not well-known projects.

68

Except model 1.1.13 and 1.1.14 (in�uence of code contribution on young residual projects, i.e. new and unknown

projects of �rms). But we have to be consider, that model 1.1.13 and 1.1.14 are using the smallest subset of 909 observations,

which may cause the poor ��ing among other things.

69

on ”Top Projects” externals’ participation has a high positive impact on internal developers as well

42

4.5 H 1.2: If �rm employees participate more o�en on issue threads, external
developers do as well

4.5.1 H 1.2.1: Models and Terminology for Issues

We observe the number of created (i.e. opened) issues by GitHub users. With linear regression we

want to determine the in�uence of the participation of �rm employed developers on the participation

of external GitHub users and vice versa. Neither we consider the content size (i.e. how much the

user actually wrote) nor do we rate the quality of an issue.

issues by int. users: Number of issues created by �rm employed developers / GitHub users

issues by ext. users: Number of issues created by external developers / GitHub users

See section 4.1 and 4.2 (page 39 and 40) for further explanation of terms, de�nitions and plots.

See listing 4 on page 60 for de�ned models in R code.

4.5.2 H 1.2.1: Plots for Issues

See page 125 for plots.

4.5.3 H 1.2.1: Regression Tables for Issues

Additional regression tables can be found in 27, page 80 - 82 (table 27, 28 and 29).

43

Dependent variable:

issues by ext. users issues by �rm empl. users issues by ext. users issues by �rm empl. users

(1.2.1) (1.2.2) (1.2.3) (1.2.4)

issues by �rm empl. users 23.800
∗∗∗

33.598
∗∗∗

(0.867) (2.443)

issues by ext. users 0.009
∗∗∗

0.008
∗∗∗

(0.0003) (0.001)

Constant 70.842
∗∗∗

0.704
∗∗∗

228.113
∗∗∗

2.252
∗∗∗

(7.446) (0.143) (38.219) (0.599)

Observations 2,935 2,935 523 523

R
2

0.205 0.205 0.266 0.266

Adjusted R
2

0.204 0.204 0.265 0.265

Residual Std. Error 395.887 (df = 2933) 7.523 (df = 2933) 817.527 (df = 521) 12.557 (df = 521)

F Statistic 754.343
∗∗∗

(df = 1; 2933) 754.343
∗∗∗

(df = 1; 2933) 189.129
∗∗∗

(df = 1; 521) 189.129
∗∗∗

(df = 1; 521)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 9: Impact of issue participation by �rm employed developers on external users (and v.v.) in

”All Projects” (Model 1.2.1 - 1.2.2) and ”Top Projects” (Model 1.2.3 - 1.2.4)

44

4.5.4 H 1.2.2: Models for Issues’ Comments

Every issue contains comments which enables discussion between users. Beside the number of

comments per issue we consider the size of involvement for every user by measuring the size of

wri�en text. Every character of a comment is taken into account and �nally add up to obtain a

share of content contribution. �is implies that if (for example) a �rm employed developer writes

400 characters long comments in total inside an issue thread with all comments together having a

size of 1,200 characters, the content share of the �rm employed developer would be
1
3 . We also use

the number of issue comments as unit of measurement.

Every dot represents an issue with it’s comments and is plo�ed through number of issue comments

by �rm employee / developer (x-axis) against number of issue comments by external users (y-axis). See

section 4.1 and 4.2 (on page 39 and 40) for further explanation of terms, de�nitions and plots.

issues’ comments by �rm employed developers: Number of issue comments by �rm employed

developers / GitHub users

issues’ comments by external developers / users: Number of issue comments by external de-

velopers / GitHub users

content share by �rm employed developers: Share (between 0 and 1) of wri�en content on

comments by �rm employed developers / GitHub users with respect to all wri�en content

of the issue thread

content share by external developers / users: Share (between 0 and 1) of wri�en content on

comments by external developers / GitHub users with respect to all wri�en content of the

issue thread

Note: �e actual numbers of observations are much higher: �e number of preprocessed issue com-

ments is 1,034,702 (each of them belonging to one of the 2,609 issues which are �nally counted as

observation).

See listing 5 on page 61 for models de�ned in R code.

4.5.5 H 1.2.2: Plots for Issues’ Comments

See page 127 for plots.

45

4.5.6 H 1.2.2: Regression Tables for Issues’ Comments

Additional regression tables can be found in chapter B.5, page 84 - 85 (table 30 and 31).

Dependent variable:

Number of comments Comments by ext. developers Comments by �rm employed developers

(1.3.1) (1.3.2) (1.3.3) (1.3.4)

Content share by �rm employed developers 17,616.700 17,210.760

(108,998.200) (105,034.700)

Comments by �rm employed developers 14.362
∗∗∗

(0.263)

Comments by ext. developers 0.037
∗∗∗

(0.001)

Constant 492.454
∗∗∗

481.881
∗∗∗

330.379
∗∗∗ −7.338

∗∗

(92.407) (89.046) (60.837) (3.108)

Observations 2,609 2,609 2,609 2,609

R
2

0.00001 0.00001 0.534 0.534

Adjusted R
2 −0.0004 −0.0004 0.533 0.533

Residual Std. Error (df = 2607) 4,716.907 4,545.387 3,104.210 157.884

F Statistic (df = 1; 2607) 0.026 0.027 2,982.656
∗∗∗

2,982.656
∗∗∗

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 10: Impact of participation by content share in issues’ comments (Model 1.3.1 - 1.3.2) and number of comments by �rm employed users on external

users (and v.v.) in all Projects (Model 1.3.3 - 1.3.4)

4
6

4.5.7 H 1.2.1 and H 1.2.2: Results and Interpretation

If �rm employed users 70 participate more actively by writing comments on issues, they

have a positive signi�cant impact on the participationnumber of external users (bywriting

comments as well).

However, there is no evidence that the share of content has an e�ect as well. �e reason might be

that the size of wri�en text is not as important as the action of participating with communication

itself. Maybe measurement of the content quality in a more sophisticated way could �nd a signi�cant

correlation.

4.6 H 1: Results and Interpretation

In all participation areas (code commitment, issue opening and issue commenting) the

commitment of �rm employees has a positive signi�cant impact on the commitment of

external developers. �e impact is essentially higher than the in�uence from external

developers on internal developers 71
.

70 GitHub users can be moderators, representatives or developers of a �rm

71

as stated before, the impact of external developers on internal developers is also signi�cant and positive, but essen-

tially weaker and tending towards zero in most cases

47

4.7 H 2: Firm employees’ participation (in the beginning) a�ects the (later) suc-
cess of �rm-initiated open source projects

4.7.1 H 2.1: If �rm employees contribute source code more o�en in the beginning, the

project gets more successful

All observed repositories (1,409 repositories) are older than 4 years to make them comparable over

time
72

. Today is the point in time of receiving data
73

∀ ratiot, forkst, subscriberst (6)

t ∈ {1, 2, 3, 4, {1− 2}, {2− 3}, {3− 4}, {5− 6}, today} (7)

(8)

t1 := �rst 3 months (91 days)

t2 := �rst half year (182 days)

t3 := �rst year (364 days)

t4 := �rst two years (728 days)

t1−2 := �rst 182 days

t2−3 := between day 183 - 364

t3−4 := between day 365 - 728

t5−6 := a�er 728 days until ”today”

See listing 6 on page 62 for models de�ned in R code.

72

All �nally observed repositories can be found at: https://git.zeitpulse.com/philipp/masterthesis-data/

raw/master/csv/calculated/time obervations in section code and events.csv
73

period of receiving data is from 16
th

- 20
th

January 2016

48

https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/calculated/time_obervations_in_section_code_and_events.csv
https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/calculated/time_obervations_in_section_code_and_events.csv

4.8 H 2.1: Regression Tables

Additional regression tables can be found in chapter B.6, page 86 - 93 (see table 32, 33, 34, 35, 36, 37,

38 and 39)

Dependent variable:

Top Project

(2.1.1) (2.1.2) (2.1.3) (2.1.4)

Age 0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Ratio1 1.774
∗∗∗

(0.184)

Ratio2 1.760
∗∗∗

(0.174)

Ratio3 1.680
∗∗∗

(0.173)

Ratio4 1.758
∗∗∗

(0.178)

Constant −2.722
∗∗∗ −2.906

∗∗∗ −2.965
∗∗∗ −3.160

∗∗∗

(0.209) (0.216) (0.218) (0.227)

Observations 1,409 1,409 1,409 1,409

Log Likelihood −704.245 −699.204 −702.446 −699.158

Akaike Inf. Crit. 1,414.490 1,404.408 1,410.893 1,404.317

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 11: �e higher the ”Ratio” (code contribution share) by �rm developers in the beginning the

more likely it is a ”Top Project” in the long-run (Model 2.1.1 - Model 2.1.4)

49

Dependent variable:

Top Project

(2.1.5) (2.1.6) (2.1.7) (2.1.8) (2.1.9) (2.1.10)

Age 0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0002)

Subscribers1 24.942
∗∗∗

(5.700)

Subscribers2 6.733
∗∗∗

(1.453)

Subscribers3 5.789
∗∗∗

(0.836)

Subscribers4 1.231
∗∗∗

(0.433)

Subscribers5 −1.673
∗∗∗

(0.310)

subscribers.today 0.005
∗∗∗

(0.0003)

Constant −2.481
∗∗∗ −2.798

∗∗∗ −3.637
∗∗∗ −2.972

∗∗∗ −2.095
∗∗∗ −4.514

∗∗∗

(0.203) (0.231) (0.290) (0.321) (0.193) (0.366)

Observations 1,409 1,409 1,409 1,409 1,409 1,409

Log Likelihood −740.587 −740.066 −725.080 −746.645 −734.832 −302.736

Akaike Inf. Crit. 1,487.175 1,486.132 1,456.161 1,499.291 1,475.665 611.471

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 12: �e more ”Subscribers” a project gains in the beginning (i.e. the �rst 3 months) the more

likely it is a ”Top Project” in the long-run (Model 2.1.5 - 2.1.10)

50

4.9 H 2.1: Interpretation and Conclusion

Allmodels show that the attention a projects gains in the beginning has the biggest impact

on later success and popularity. Moreover, commitment of �rm employed developers in

the beginning has a stronger impact of (later) social success metrics. �us, early commit-

ments of employees have a stronger positive impact on long-term project’s success and

popularity than later ones.

�e most important time period seems to be the �rst 12 months (see table 36, 37, 38 and 39). �is

time period has the biggest impact on early social success (”Stars”, ”Forks” and ”Subscribers”), which

in turn have the largest positive impact on the chance that a project becomes a ”Top Project”.

Nevertheless, the network e�ect of commitment on time-bound social metrics could not entirely

be explained. �ere is a strong evidence that earlier commitment of �rm employed developers has

an a�rmative in�uence of later / long-term project’s success, but furthers investigation and more

sophisticated models are necessary to con�rm the �nal analysis.

51

4.10 H 3: If �rm employees’ contribution share is higher overall the more likely
the project is popular

In the following, plots and tables will investigate the impact of ”Ratio” (i.e. share of �rm employed

developers on code contributions) on projects’ social success (”Stars”, ”Subscribers”, ”Forks”, ”Num-

ber of Issues”, ”Number of contributors” and is ”Top Project”). We assume that ”Age” (in days) has

a positive in�uence on social success metrics, too
74

. ”Number of Contributors” is just a validation

of data and model �t, since it should not be in�uenced necessarily by ”Ratio” (but ”Age”).

We assume that �rms and programming languages have an impact on the mentioned a�ributes as

well
75

. �us, we introduce dummy variables for Programming Languages (10 in total) and Firms (58

in total) to achieve possibly be�er model �ts. Beside the linear regression we use linear mixed-e�ects

models (Bates et al. (2015)) (see table15 and 44) to consider e�ects between ”Firms” and ”Program-

ming Languages” (similar approach as dummy variables).

Detailed regression tables regarding to project size and popularity (with dummy variables for pro-

gramming languages and �rms) can be looked up in table 42 and 43 on page 101.

See listing 7 on page 65 for models de�ned in R code.

4.10.1 H 3.1: Plots

0

250

500

750

1000

0.00 0.25 0.50 0.75 1.00
Ratio

S
ta

rs

Figure 12: Correlation coe�cient (yellow slope) of ”Ratio” on ”Stars” (Model 3.1)

74

because the older a project gets, the higher the number of ”Stars”, ”Subscribers” etc. might be

75

”Top Projects” are selected by programming languages, but ”Residual Projects” need to be considered as well

52

4.10.2 H 3.1: Regression Tables

Dependent variable:

Stars Subscribers Forks

(3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (3.8) (3.9) (3.10) (3.11) (3.12)

Ratio 295.609
∗∗∗

278.398
∗∗∗

129.899 152.407
∗

7.184 7.068 18.616
∗∗∗

17.985
∗∗∗

51.697
∗∗∗

39.361
∗∗

26.293 29.970

(75.069) (79.011) (83.121) (83.466) (6.010) (6.284) (6.284) (6.322) (18.318) (19.329) (20.865) (21.002)

Age 0.367
∗∗∗

0.437
∗∗∗

0.443
∗∗∗

0.494
∗∗∗

0.031
∗∗∗

0.036
∗∗∗

0.037
∗∗∗

0.039
∗∗∗

0.129
∗∗∗

0.143
∗∗∗

0.151
∗∗∗

0.158
∗∗∗

(0.047) (0.049) (0.050) (0.051) (0.004) (0.004) (0.004) (0.004) (0.011) (0.012) (0.013) (0.013)

Constant −0.236 −70.590 −434.208
∗∗∗ −764.217

∗∗∗
48.363

∗∗∗
47.700

∗∗∗ −20.544
∗ −39.926

∗∗∗ −23.486 −43.139 −113.655
∗∗∗ −192.851

∗∗∗

(60.212) (154.968) (139.704) (195.611) (4.821) (12.325) (10.562) (14.817) (14.692) (37.910) (35.069) (49.222)

Observations 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419

Log Likelihood −29,905.750 −29,877.320 −29,692.650 −29,668.010 −21,273.000 −21,221.860 −20,863.760 −20,845.730 −25,083.110 −25,063.340 −24,966.870 −24,950.480

Akaike Inf. Crit. 59,817.500 59,778.650 59,505.300 59,474.010 42,552.000 42,467.720 41,847.520 41,829.460 50,172.220 50,150.680 50,053.740 50,038.950

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 13: Impact of ”Age” and ”Ratio” on ”Stars”, ”Subscribers” and ”Forks” through Fi�ing Generalized Linear Models with dummy variables for Firms and

Programming Languages. Using (a) dummy variables for each Firm in model 3.3, 3.7 and 3.11 (b) dummy variables for each Language in model 3.2, 3.6, 3.10

(c) dummy variables for each Firm and Language in model 3.4, 3.8 and 3.12

See regression table 45 and 46 (page 112 - 113) for results having ”Ratio” as dependent variable and table 44 (page 111) for Mixed Model between Firms and

Programming Languages.

5
3

Dependent variable:

Number of Issues Number of Contributors Top Project

normal normal logistic

(3.13) (3.14) (3.15) (3.16) (3.17) (3.18) (3.19) (3.20) (3.21) (3.22) (3.23) (3.24)

Ratio 2.147 2.006 7.861
∗

7.612
∗ −2.417 −2.647 1.391 1.402 2.025

∗∗∗
1.727

∗∗∗
1.906

∗∗∗
1.753

∗∗∗

(3.717) (3.930) (4.235) (4.275) (1.911) (2.005) (2.051) (2.067) (0.155) (0.166) (0.191) (0.197)

Age 0.015
∗∗∗

0.017
∗∗∗

0.021
∗∗∗

0.022
∗∗∗

0.018
∗∗∗

0.019
∗∗∗

0.020
∗∗∗

0.021
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

(0.002) (0.002) (0.003) (0.003) (0.001) (0.001) (0.001) (0.001) (0.0001) (0.0001) (0.0001) (0.0001)

Constant 8.443
∗∗∗ −2.780 −19.593

∗∗∗ −34.006
∗∗∗

5.114
∗∗∗

4.488 −14.598
∗∗∗ −20.129

∗∗∗ −3.426
∗∗∗ −2.546

∗∗∗ −5.820
∗∗∗ −6.276

∗∗∗

(2.981) (7.707) (7.118) (10.018) (1.533) (3.933) (3.447) (4.845) (0.140) (0.251) (0.437) (0.529)

Observations 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419

Log Likelihood −19,630.080 −19,616.630 −19,514.800 −19,507.690 −17,355.340 −17,316.430 −17,035.330 −17,023.880 −1,458.752 −1,373.897 −1,208.251 −1,150.787

Akaike Inf. Crit. 39,266.160 39,257.260 39,149.610 39,153.370 34,716.680 34,656.870 34,190.660 34,185.760 2,923.504 2,771.795 2,536.502 2,439.574

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 14: Impact of ”Age” and ”Ratio” on ”Issues”, ”Contributors” and ”Popularity” through Fi�ing Generalized Linear Models. Using (a) dummy variables

for each Firm in model 3.15, 3.19 and 3.23 (b) dummy variables for each Language in model 3.14, 3.18, 3.22 (c) dummy variables for each Firm and Language

in model 3.16, 3.20 and 3.24

5
4

Dependent variable:

Stars Subscribers Forks Number of Issues Number of Contributors Top Project

linear linear linear linear linear generalized linear

mixed-e�ects mixed-e�ects mixed-e�ects mixed-e�ects mixed-e�ects mixed-e�ects

(3.25) (3.26) (3.27) (3.28) (3.29) (3.30)

Ratio 149.245
∗

18.379
∗∗∗

31.783 5.896 1.235 1.910
∗∗∗

(82.032) (6.237) (20.266) (4.111) (2.032) (0.185)

Age 0.420
∗∗∗

0.036
∗∗∗

0.142
∗∗∗

0.020
∗∗∗

0.020
∗∗∗

0.001
∗∗∗

(0.049) (0.004) (0.012) (0.002) (0.001) (0.0001)

Constant 160.468 44.443
∗∗∗ −9.606 2.911 2.225 −3.497

∗∗∗

(104.513) (9.753) (21.187) (4.280) (2.974) (0.235)

Observations 3,419 3,419 3,419 3,419 3,419 3,419

Log Likelihood −29,774.830 −20,966.900 −25,031.110 −19,582.970 −17,137.260 −1,298.686

Akaike Inf. Crit. 59,559.660 41,943.800 50,072.220 39,175.940 34,284.520 2,605.372

Bayesian Inf. Crit. 59,590.340 41,974.490 50,102.910 39,206.620 34,315.210 2,629.921

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 15: Impact of ”Age” and ”Ratio” on projects’ social metrics (”Stars”, ”Subscribers”, ”Forks” and ”Issues”) and popularity (is ”Top Project” yes / no)

through Mixed Model between Firms. ”Number of Contributors” is just a control a�ribute and not a describing model.

5
5

4.11 H 3: Results and Interpretation

�e ”Ratio” (i.e. the share of code commits by �rm employed developers) has a signi�cant

positive impact on the popularity of a project.

If we use ”Stars” as a proxy for popularity, we can approve that the ”Ratio” has a high positive

in�uence on the likelihood that a project is (very) popular (correlation coe�cient is 295, see model

3.1 in table 13). �is extends to ”Subscribers” as well but with a lower impact (see model 3.7 and 3.8

in table 13). ”Forks” are also positively in�uenced by ”Ratio” but also with a much lower correlation

coe�cient (see model 3.10 in table 13). Interestingly enough, ”Ratio” has no (signi�cant) impact on

the number of issues - but issue participation share has an impact on success and popularity (as

shown in chapter 4.5.7).

Unfortunately, dummy variables (for Firms and Programming Languages respectively) have diverse

e�ects on the regression results. �is might be caused by di�erent popularity a�ributes which are

e�ected by di�erent users’ behavior. For example: JavaScript developers could be more ”Stargazer”

friendly, C++ developer user more ”Subscriber” friendly (and so on). Firms also may have di�erent

e�ects on speci�c popularity a�ributes: Some are more popular and some are less popular in the OS

community (see the example of Microso� and GitHub in chapter 3.16).

Another broad hint is given by the logistic regression models: �e probability that a project is a

”Top Project” depends signi�cant on the size of ”Ratio” (see model 3.21 - 3.24 in table 14). By

using logistics regression we can interpret βj through eβj as e�ect coe�cient (Agresti et al., 2007,

p. 71). �us, the e�ect coe�cient is between e1.727 ≈ 5.62 and e1.91 ≈ 6.75 76
. �is means that

projects with highest ”Ratios” are more likely ”Top Projects” by the factor of 6.

76

the problem of multicollinearity might reduce the validity of the mentioned e�ect coe�cients, but seems to be

rejected by results in observations over time (see chapter 4.7)

56

5 Results and Conclusion

All hypotheses are mainly con�rmed by the empirical �ndings:

• �rough their code contribution �rm employed developers have a strong positive impact on

the code contribution of external developers

• Firm employed developers have a strong positive impact by participating on issues and com-

ments in issues by causing more participation of external users

• �e �rst year seems to be the most important time period for �rm employed developers’

participation: High contribution ratio in the beginning bene�ts popularity and success of the

OS project in the long run

• �e higher the overall share of contribution from �rm employed developers, the more likely

the project is successful and accepted by the OS community

Nevertheless, in�uence of higher participation of �rm employed developers could not be veri�ed

ultimately on some continuous social metrics
77

which might be caused by broad di�erence of pop-

ularity and level of awareness between �rms and so�ware segments.

Beside the regression results we also receive interesting fringe insights: According to the frequency

of commits with respect to daytime we can assume, that most �rms and OS developers do work in

USA, Canada and Europe. Also do external developers seem to be employed as well. Most developers

commit source code at the usual working time period (9 a.m. - 5 p.m.) and ”external developers” do

not di�er signi�cantly from as ”�rm employed” classi�ed developers. �is would imply, that there

is a stronger collaboration between �rms than between �rms and ”libertine” developers.

5.1 Implications and Managerial Advice

Firms should initiate and invest
78

in their OS projects. �e share of code contribution by �rm

employees should be very high - especially in the beginning - to achieve a broad acceptance by

the OS community and developers on (rival) �rms
79

. �e return of investment will be a multiplier

e�ect on commitment
80

by external developers and a gain on level of awareness. Beside that,

�rms’ OS commitment might lead to more cross-�rm collaboration, improve employment of external

developers and bring forward establishing new technologies in smaller amounts of time. If the share

of �rm employed developers is higher than usual, projects seem more likely to reach a certain degree

77 Forks and Number of Issues on some models

78

with funds and man-power

79

contribution in the beginning can be interpreted as groundwork that needs to be done by �rm employed developers

to build a solid so�ware foundation

80

via source code contribution and participation in communication channels

57

of quality, maturity and a�ention. As result the community is willing to contribute their professional

expertise for free to the project.

5.2 Further Research

�e empirical data implies further research with respect to broader observations of �rms and projects.

By analyzing more �rms and projects the hypotheses could eventually be applied more generally to

so�ware technology driven �rms. Consideration of �nancial data of �rms could reveal the impact

of OS commitment on �rms’ revenue. And more sophisticated employees �rm rating would help to

investigate the coherence of OS commitment and quality of work environment. Furthermore, obser-

vations of network relations between �rms, developers and users would improve the understanding

of the importance of collaboration and exchange of knowledge.

58

A Listings

Listing 1: Big�ery via GitHubArchive

-- # Using data from https ://www.githubarchive.org/

-- 1. Login into the Google Developer Console

-- (https :// console.developers.google.com/)

-- 2. Create a project

-- (https :// developers.google.com/console/help/# creatingdeletingprojects)

-- 3. Activate the BigQuery API

-- (https :// developers.google.com/console/help/# activatingapis)

-- 4. Open public dataset

-- (https :// bigquery.cloud.google.com/table/githubarchive:day.

events_20150101)

-- All data is collected since 2011 - 2014

-- Count GitHub users

SELECT COUNT(DISTINCT actor) FROM [githubarchive:github.timeline]

-- → 4525103

Listing 2: Structure of a git commit

commit a35c785202ef7351f1e071a0191b201b745da168

Merge: fbb9327 12667fc

Author: Name <email >

Date: Sun Jul 26 21:10:39 2015 -0400

Message / description of the commit

Listing 3: Linear regression models in R for H 1.1

linear .1.1.1 <- lm(formula = `ext. commits ` ˜ `int. commits `, data =

codeContributions)

linear .1.1.2 <- lm(formula = `int. commits ` ˜ `ext. commits `, data =

codeContributions)

linear .1.1.3 <- lm(formula = `ext. commits ` ˜ `int. commits `, data =

codeContributions[codeContributions$is_top_project == TRUE ,])

linear .1.1.4 <- lm(formula = `int. commits ` ˜ `ext. commits `, data =

codeContributions[codeContributions$is_top_project == TRUE ,])

linear .1.1.5 <- lm(formula = `ext. commits ` ˜ `int. commits `, data =

codeContributions[codeContributions$is_top_project == FALSE ,])

linear .1.1.6 <- lm(formula = `int. commits ` ˜ `ext. commits `, data =

codeContributions[codeContributions$is_top_project == FALSE ,])

59

linear .1.1.7 <- lm(formula = `ext. commits ` ˜ `int. commits `, data =

codeContributions[codeContributions$is_top_project == TRUE &

codeContributions$age >= 365,])

linear .1.1.8 <- lm(formula = `int. commits ` ˜ `ext. commits `, data =

codeContributions[codeContributions$is_top_project == TRUE &

codeContributions$age >= 365,])

linear .1.1.9 <- lm(formula = `ext. commits ` ˜ `int. commits `, data =

codeContributions[codeContributions$is_top_project == FALSE &

codeContributions$age >= 365,])

linear .1.1.10 <- lm(formula = `int. commits ` ˜ `ext. commits `, data =

codeContributions[codeContributions$is_top_project == FALSE &

codeContributions$age >= 365,])

linear .1.1.11 <- lm(formula = `ext. commits ` ˜ `int. commits `, data =

codeContributions[codeContributions$is_top_project == TRUE &

codeContributions$age < 365,])

linear .1.1.12 <- lm(formula = `int. commits ` ˜ `ext. commits `, data =

codeContributions[codeContributions$is_top_project == TRUE &

codeContributions$age < 365,])

linear .1.1.13 <- lm(formula = `ext. commits ` ˜ `int. commits `, data =

codeContributions[codeContributions$is_top_project == FALSE &

codeContributions$age < 365,])

linear .1.1.14 <- lm(formula = `int. commits ` ˜ `ext. commits `, data =

codeContributions[codeContributions$is_top_project == FALSE &

codeContributions$age < 365,])

Listing 4: Linear regression models in R for H 1.2

linear .1.2.1 <- lm(formula = issues_count_by_external_developer ˜

issues_count_by_firm_employed_developer , data = issues)

linear .1.2.2 <- lm(formula = issues_count_by_firm_employed_developer ˜

issues_count_by_external_developer , data = issues)

linear .1.2.3 <- lm(formula = issues_count_by_external_developer ˜

issues_count_by_firm_employed_developer , data =

issues[issues$is_top_project == TRUE ,])

linear .1.2.4 <- lm(formula = issues_count_by_firm_employed_developer ˜

issues_count_by_external_developer , data = issues[issues$is_top_project ==

TRUE ,])

linear .1.2.5 <- lm(formula = issues_count_by_external_developer ˜

issues_count_by_firm_employed_developer , data =

issues[issues$is_top_project == FALSE ,])

linear .1.2.6 <- lm(formula = issues_count_by_firm_employed_developer ˜

issues_count_by_external_developer , data = issues[issues$is_top_project ==

FALSE ,])

linear .1.2.7 <- lm(formula = issues_count_by_external_developer ˜

issues_count_by_firm_employed_developer , data =

60

issues[issues$is_top_project == TRUE & issues$age >= 365,])

linear .1.2.8 <- lm(formula = issues_count_by_firm_employed_developer ˜

issues_count_by_external_developer , data = issues[issues$is_top_project ==

TRUE & issues$age >= 365,])

linear .1.2.9 <- lm(formula = issues_count_by_external_developer ˜

issues_count_by_firm_employed_developer , data =

issues[issues$is_top_project == FALSE & issues$age >= 365,])

linear .1.2.10 <- lm(formula = issues_count_by_firm_employed_developer ˜

issues_count_by_external_developer , data = issues[issues$is_top_project ==

FALSE & issues$age >= 365,])

linear .1.2.11 <- lm(formula = issues_count_by_external_developer ˜

issues_count_by_firm_employed_developer , data =

issues[issues$is_top_project == TRUE & issues$age < 365,])

linear .1.2.12 <- lm(formula = issues_count_by_firm_employed_developer ˜

issues_count_by_external_developer , data = issues[issues$is_top_project ==

TRUE & issues$age < 365,])

linear .1.2.13 <- lm(formula = issues_count_by_external_developer ˜

issues_count_by_firm_employed_developer , data =

issues[issues$is_top_project == FALSE & issues$age < 365,])

linear .1.2.14 <- lm(formula = issues_count_by_firm_employed_developer ˜

issues_count_by_external_developer , data = issues[issues$is_top_project ==

FALSE & issues$age < 365,])

Listing 5: Linear regression models in R for H 1.3

linear .1.3.1 <- lm(formula = issue_comments_count ˜

content_share_by_firm_employed_developer , data = observedIssuesComments)

linear .1.3.2 <- lm(formula = comments_count_by_ext ˜

content_share_by_firm_employed_developer , data = observedIssuesComments)

linear .1.3.3 <- lm(formula = comments_count_by_ext ˜ comments_count_by_int ,

data = observedIssuesComments)

linear .1.3.4 <- lm(formula = comments_count_by_int ˜ comments_count_by_ext ,

data = observedIssuesComments)

linear .1.3.5 <- lm(formula = issue_comments_count ˜

content_share_by_firm_employed_developer , data =

subset(observedIssuesComments , issuesComments$is_top_project == TRUE))

linear .1.3.6 <- lm(formula = comments_count_by_ext ˜

content_share_by_firm_employed_developer , data =

subset(observedIssuesComments , issuesComments$is_top_project == TRUE))

linear .1.3.7 <- lm(formula = comments_count_by_ext ˜ comments_count_by_int ,

data = subset(observedIssuesComments , issuesComments$is_top_project ==

TRUE))

linear .1.3.8 <- lm(formula = comments_count_by_int ˜ comments_count_by_ext ,

data = subset(observedIssuesComments , issuesComments$is_top_project ==

TRUE))

61

linear .1.3.9 <- lm(formula = issue_comments_count ˜

content_share_by_firm_employed_developer , data =

subset(observedIssuesComments , issuesComments$is_top_project == FALSE))

linear .1.3.10 <- lm(formula = comments_count_by_ext ˜

content_share_by_firm_employed_developer , data =

subset(observedIssuesComments , issuesComments$is_top_project == FALSE))

linear .1.3.11 <- lm(formula = comments_count_by_ext ˜ comments_count_by_int ,

data = subset(observedIssuesComments , issuesComments$is_top_project ==

FALSE))

linear .1.3.12 <- lm(formula = comments_count_by_int ˜ comments_count_by_ext ,

data = subset(observedIssuesComments , issuesComments$is_top_project ==

FALSE))

Listing 6: Linear regression models in R for H 2.1

linear .2.1.1 <- glm(formula = is_top_project ˜ age + ratio.1,

family=binomial(link= 'logit '), data = observations)

linear .2.1.2 <- glm(formula = is_top_project ˜ age + ratio.2,

family=binomial(link= 'logit '), data = observations)

linear .2.1.3 <- glm(formula = is_top_project ˜ age + ratio.3,

family=binomial(link= 'logit '), data = observations)

linear .2.1.4 <- glm(formula = is_top_project ˜ age + ratio.4,

family=binomial(link= 'logit '), data = observations)

linear .2.1.5 <- glm(formula = is_top_project ˜ age + subscribers .1,

family=binomial(link= 'logit '), data = observations)

linear .2.1.6 <- glm(formula = is_top_project ˜ age + subscribers .2,

family=binomial(link= 'logit '), data = observations)

linear .2.1.7 <- glm(formula = is_top_project ˜ age + subscribers .3,

family=binomial(link= 'logit '), data = observations)

linear .2.1.8 <- glm(formula = is_top_project ˜ age + subscribers .4,

family=binomial(link= 'logit '), data = observations)

linear .2.1.9 <- glm(formula = is_top_project ˜ age + subscribers .5,

family=binomial(link= 'logit '), data = observations)

linear .2.1.10 <- glm(formula = is_top_project ˜ age + subscribers.today ,

family=binomial(link= 'logit '), data = observations)

linear .2.1.11 <- glm(formula = is_top_project ˜ age + forks.1,

family=binomial(link= 'logit '), data = observations)

linear .2.1.12 <- glm(formula = is_top_project ˜ age + forks.2,

family=binomial(link= 'logit '), data = observations)

linear .2.1.13 <- glm(formula = is_top_project ˜ age + forks.3,

family=binomial(link= 'logit '), data = observations)

linear .2.1.14 <- glm(formula = is_top_project ˜ age + forks.4,

family=binomial(link= 'logit '), data = observations)

62

linear .2.1.15 <- glm(formula = is_top_project ˜ age + forks.5,

family=binomial(link= 'logit '), data = observations)

linear .2.1.16 <- glm(formula = is_top_project ˜ age + forks.today ,

family=binomial(link= 'logit '), data = observations)

linear .2.1.17 <- glm(formula = is_top_project ˜ age + forks.1_2,

family=binomial(link= 'logit '), data = observations)

linear .2.1.18 <- glm(formula = is_top_project ˜ age + forks.2_3,

family=binomial(link= 'logit '), data = observations)

linear .2.1.19 <- glm(formula = is_top_project ˜ age + forks.3_4,

family=binomial(link= 'logit '), data = observations)

linear .2.1.20 <- glm(formula = is_top_project ˜ age + forks.4_5,

family=binomial(link= 'logit '), data = observations)

linear .2.1.21 <- glm(formula = forks.1 ˜ age + ratio.1, data = observations)

linear .2.1.22 <- glm(formula = forks.2 ˜ age + ratio.2, data = observations)

linear .2.1.23 <- glm(formula = forks.3 ˜ age + ratio.3, data = observations)

linear .2.1.24 <- glm(formula = forks.4 ˜ age + ratio.4, data = observations)

linear .2.1.25 <- glm(formula = forks.2 ˜ age + ratio.1, data = observations)

linear .2.1.26 <- glm(formula = forks.3 ˜ age + ratio.2, data = observations)

linear .2.1.27 <- glm(formula = forks.4 ˜ age + ratio.3, data = observations)

linear .2.1.28 <- glm(formula = forks.5 ˜ age + ratio.4, data = observations)

linear .2.1.29 <- glm(formula = forks.3 ˜ age + ratio.1, data = observations)

linear .2.1.30 <- glm(formula = forks.4 ˜ age + ratio.2, data = observations)

linear .2.1.31 <- glm(formula = forks.5 ˜ age + ratio.3, data = observations)

linear .2.1.32 <- glm(formula = subscribers .1 ˜ age + ratio.1, data =

observations)

linear .2.1.33 <- glm(formula = subscribers .2 ˜ age + ratio.2, data =

observations)

linear .2.1.34 <- glm(formula = subscribers .3 ˜ age + ratio.3, data =

observations)

linear .2.1.35 <- glm(formula = subscribers .4 ˜ age + ratio.4, data =

observations)

linear .2.1.36 <- glm(formula = subscribers .2 ˜ age + ratio.1, data =

observations)

linear .2.1.37 <- glm(formula = subscribers .3 ˜ age + ratio.2, data =

observations)

linear .2.1.38 <- glm(formula = subscribers .4 ˜ age + ratio.3, data =

observations)

linear .2.1.39 <- glm(formula = subscribers .5 ˜ age + ratio.4, data =

observations)

linear .2.1.40 <- glm(formula = subscribers .3 ˜ age + ratio.1, data =

observations)

63

linear .2.1.41 <- glm(formula = subscribers .4 ˜ age + ratio.2, data =

observations)

linear .2.1.42 <- glm(formula = subscribers .5 ˜ age + ratio.3, data =

observations)

linear .2.1.43 <- glm(formula = forks.today ˜ age + ratio.1, data =

observations)

linear .2.1.44 <- glm(formula = forks.today ˜ age + ratio.2, data =

observations)

linear .2.1.45 <- glm(formula = forks.today ˜ age + ratio.3, data =

observations)

linear .2.1.46 <- glm(formula = forks.today ˜ age + ratio.4, data =

observations)

linear .2.1.47 <- glm(formula = subscribers.today ˜ age + ratio.1, data =

observations)

linear .2.1.48 <- glm(formula = subscribers.today ˜ age + ratio.2, data =

observations)

linear .2.1.49 <- glm(formula = subscribers.today ˜ age + ratio.3, data =

observations)

linear .2.1.50 <- glm(formula = subscribers.today ˜ age + ratio.4, data =

observations)

linear .2.1.51 <- glm(formula = forks.today ˜ age + ratio.1_2, data =

observations)

linear .2.1.52 <- glm(formula = forks.today ˜ age + ratio.2_3, data =

observations)

linear .2.1.53 <- glm(formula = forks.today ˜ age + ratio.3_4, data =

observations)

linear .2.1.54 <- glm(formula = forks.today ˜ age + ratio.4_5, data =

observations)

linear .2.1.55 <- glm(formula = subscribers.today ˜ age + ratio.1_2, data =

observations)

linear .2.1.56 <- glm(formula = subscribers.today ˜ age + ratio.2_3, data =

observations)

linear .2.1.57 <- glm(formula = subscribers.today ˜ age + ratio.3_4, data =

observations)

linear .2.1.58 <- glm(formula = subscribers.today ˜ age + ratio.4_5, data =

observations)

linear .2.1.59 <- glm(formula = is_top_project ˜ age + ratio.1_2,

family=binomial(link= 'logit '), data = observations)

linear .2.1.60 <- glm(formula = is_top_project ˜ age + ratio.2_3,

64

family=binomial(link= 'logit '), data = observations)

linear .2.1.61 <- glm(formula = is_top_project ˜ age + ratio.3_4,

family=binomial(link= 'logit '), data = observations)

linear .2.1.62 <- glm(formula = is_top_project ˜ age + ratio.4_5,

family=binomial(link= 'logit '), data = observations)

Listing 7: Linear regression models in R for H 3.1

linear .3.1 <- glm(formula = stargazers_count ˜ ratio + age , data =

contributions)

linear .3.2 <- glm(formula = stargazers_count ˜ ratio + age + lang_ , data =

contributions)

linear .3.3 <- glm(formula = stargazers_count ˜ ratio + age + firm_ , data =

contributions)

linear .3.4 <- glm(formula = stargazers_count ˜ ratio + age + firm_ + lang_ ,

data = contributions)

linear .3.5 <- glm(formula = subscribers_count ˜ ratio + age , data =

contributions)

linear .3.6 <- glm(formula = subscribers_count ˜ ratio + age + lang_ , data =

contributions)

linear .3.7 <- glm(formula = subscribers_count ˜ ratio + age + firm_ , data =

contributions)

linear .3.8 <- glm(formula = subscribers_count ˜ ratio + age + firm_ + lang_ ,

data = contributions)

linear .3.9 <- glm(formula = forks_count ˜ ratio + age , data = contributions)

linear .3.10 <- glm(formula = forks_count ˜ ratio + age + lang_ , data =

contributions)

linear .3.11 <- glm(formula = forks_count ˜ ratio + age + firm_ , data =

contributions)

linear .3.12 <- glm(formula = forks_count ˜ ratio + age + firm_ + lang_ , data =

contributions)

linear .3.13 <- glm(formula = all_issues_count ˜ ratio + age , data =

contributions)

linear .3.14 <- glm(formula = all_issues_count ˜ ratio + age + lang_ , data =

contributions)

linear .3.15 <- glm(formula = all_issues_count ˜ ratio + age + firm_ , data =

contributions)

linear .3.16 <- glm(formula = all_issues_count ˜ ratio + age + firm_ + lang_ ,

data = contributions)

linear .3.17 <- glm(formula = contributors_count ˜ ratio + age , data =

contributions)

linear .3.18 <- glm(formula = contributors_count ˜ ratio + age + lang_ , data =

contributions)

linear .3.19 <- glm(formula = contributors_count ˜ ratio + age + firm_ , data =

65

contributions)

linear .3.20 <- glm(formula = contributors_count ˜ ratio + age + firm_ + lang_ ,

data = contributions)

linear .3.21 <- glm(formula = top_repo ˜ ratio + age , family=binomial(link= '

logit '), data = contributions)

linear .3.22 <- glm(formula = top_repo ˜ ratio + age + lang_ ,

family=binomial(link= 'logit '), data = contributions)

linear .3.23 <- glm(formula = top_repo ˜ ratio + age + firm_ ,

family=binomial(link= 'logit '), data = contributions)

linear .3.24 <- glm(formula = top_repo ˜ ratio + age + firm_ + lang_ ,

family=binomial(link= 'logit '), data = contributions)

mixedeffect .3.25 <- lmer(formula = stargazers_count ˜ ratio + age + (1 |

organization_name), data = contributions)

mixedeffect .3.26 <- lmer(formula = subscribers_count ˜ ratio + age + (1 |

organization_name), data = contributions)

mixedeffect .3.27 <- lmer(formula = forks_count ˜ ratio + age + (1 |

organization_name), data = contributions)

mixedeffect .3.28 <- lmer(formula = all_issues_count ˜ ratio + age + (1 |

organization_name), data = contributions)

mixedeffect .3.29 <- lmer(formula = contributors_count ˜ ratio + age + (1 |

organization_name), data = contributions)

mixedeffect .3.30 <- lmer(formula = top_repo ˜ ratio + age + (1 |

organization_name), family=binomial(link= 'logit '), data = contributions)

mixedeffect .3.31 <- lmer(formula = stargazers_count ˜ ratio + age + (1 |

organization_name) + (1 | language), data = contributions)

mixedeffect .3.32 <- lmer(formula = subscribers_count ˜ ratio + age + (1 |

organization_name) + (1 | language), data = contributions)

mixedeffect .3.33 <- lmer(formula = forks_count ˜ ratio + age + (1 |

organization_name) + (1 | language), data = contributions)

mixedeffect .3.34 <- lmer(formula = all_issues_count ˜ ratio + age + (1 |

organization_name) + (1 | language), data = contributions)

mixedeffect .3.35 <- lmer(formula = contributors_count ˜ ratio + age + (1 |

organization_name) + (1 | language), data = contributions)

mixedeffect .3.36 <- glmer(formula = top_repo ˜ ratio + age + (1 |

organization_name) + (1 | language), family=binomial(link= 'logit '), data =

contributions)

mixedeffect .3.37 <- lmer(formula = ratio ˜ stargazers_count + (1 |

organization_name), data = contributions)

mixedeffect .3.38 <- lmer(formula = ratio ˜ subscribers_count + (1 |

organization_name), data = contributions)

mixedeffect .3.39 <- lmer(formula = ratio ˜ forks_count + (1 |

66

organization_name), data = contributions)

mixedeffect .3.40 <- lmer(formula = ratio ˜ all_issues_count + (1 |

organization_name), data = contributions)

mixedeffect .3.41 <- lmer(formula = ratio ˜ contributors_count + (1 |

organization_name), data = contributions)

mixedeffect .3.42 <- lmer(formula = ratio ˜ top_repo + (1 | organization_name),

data = contributions)

mixedeffect .3.43 <- lmer(formula = ratio ˜ stargazers_count + (1 |

organization_name) + (1 | language), data = contributions)

mixedeffect .3.44 <- lmer(formula = ratio ˜ subscribers_count + (1 |

organization_name) + (1 | language), data = contributions)

mixedeffect .3.45 <- lmer(formula = ratio ˜ forks_count + (1 |

organization_name) + (1 | language), data = contributions)

mixedeffect .3.46 <- lmer(formula = ratio ˜ all_issues_count + (1 |

organization_name) + (1 | language), data = contributions)

mixedeffect .3.47 <- lmer(formula = ratio ˜ contributors_count + (1 |

organization_name) + (1 | language), data = contributions)

mixedeffect .3.48 <- lmer(formula = ratio ˜ top_repo + (1 | organization_name)

+ (1 | language), data = contributions)

67

B Tables

B.1 Introduction and�eory

Linux FreeBSD Unknown MS.Windows

W3Techs (02-2015) 35.9% 0.95% 30.9% 32.3%

W3cook (05-2015) 96.6% 1.7% 0% 1.7%

Table 16: Share of Operating Systems on public Internet Servers; Sources: http:

//w3techs.com/technologies/overview/operating system/all, http://w3techs.com/

technologies/details/os-unix/all/all, http://www.w3cook.com/os/summary/

Statistic N Mean St. Dev. Min Max

Top Project (yes/no) 177 0.181 0.386 0 1

Ratio 177 0.684 0.334 0.000 1.000

Age (days) 177 294.260 226.632 20 1,466

Number of Commits 177 1,241.955 10,558.430 3 127,063

Firm Employees’ Commits 177 138.073 307.597 0 2,573

External Developers’ Commits 177 1,103.881 10,548.850 0 126,912

Stars 177 186.051 580.191 0 4,909

Contributors 177 9.949 27.287 2 262

Subscribers 177 50.655 71.049 2 585

Forks 177 45.153 155.701 0 1,812

Number of Issues 177 15.429 43.100 1 420

Table 17: Statistic of Projects by Microso�

68

http://w3techs.com/technologies/overview/operating_system/all
http://w3techs.com/technologies/overview/operating_system/all
http://w3techs.com/technologies/details/os-unix/all/all
http://w3techs.com/technologies/details/os-unix/all/all
http://www.w3cook.com/os/summary/

Statistic N Mean St. Dev. Min Max

Top Project (yes/no) 40 0.400 0.496 0 1

Ratio 40 0.528 0.333 0.000 1.000

Age (days) 40 1,039.925 615.875 62 2,449

Number of Commits 40 1,784.450 7,037.635 5 44,486

Firm Employees’ Commits 40 290.175 516.544 0 1,905

External Developers’ Commits 40 1,494.275 7,021.648 0 44,482

Stars 40 993.175 1,705.672 1 7,922

Contributors 40 56.625 114.295 2 451

Subscribers 40 62.750 62.040 6 233

Forks 40 244.350 518.172 1 2,611

Number of Issues 40 20.500 43.776 1 242

Table 18: Statistic of Projects by GitHub

Statistic N Mean St. Dev. Min Max

Top Project (yes/no) 103 0.534 0.501 0 1

Ratio 103 0.591 0.342 0.000 1.000

Age (days) 103 731.204 517.623 79 2,489

Number of Commits 103 1,103.039 4,112.523 5 36,596

Firm Employees’ Commits 103 559.748 1,682.788 0 14,499

External Developers’ Commits 103 543.291 3,553.457 0 35,872

Stars 103 2,360.272 4,762.077 12 35,214

Contributors 103 36.767 70.711 2 468

Subscribers 103 188.990 347.568 16 2,617

Forks 103 396.107 854.878 2 5,716

Number of Issues 103 56.029 161.550 1 1,043

Table 19: Statistic of Projects by facebook

69

B.2 Data and Basic Statistics Tables

Name of Organization on GitHub Top Repositories is commercial Organization

1 google 85 yes

2 facebook 56 yes

3 Microso� 33 yes

4 square 30 yes

5 apache 23 partly

6 aspnet 23 partly

7 thoughtbot 23 yes

8 alibaba 19 yes

9 mozilla 18 partly

10 twi�er 18 yes

11 Net�ix 17 yes

12 github 16 yes

13 mongodb 16 yes

14 mono 16 no

15 thephpleague 16 no

16 docker 15 yes

17 elastic 15 yes

18 hashicorp 15 yes

19 golang 14 partly

20 Yalantis 13 yes

21 dotnet 12 partly

22 rails 12 partly

23 airbnb 10 yes

24 aws 10 yes

25 etsy 10 yes

26 googlesamples 10 yes

27 linkedin 10 yes

28 xamarin 10 yes

29 zeromq 10 no

30 coreos 9 partly

31 laravel 9 no

32 Shopify 9 yes

33 spring-projects 9 partly

34 adafruit 8 yes

35 bitly 8 yes

36 dmlc 8 no

37 doctrine 8 no

38 facebookarchive 8 partly

39 fastlane 8 no

40 jquery 8 no

41 KnpLabs 8 yes

70

Name of Organization on GitHub Top Repositories is commercial Organization

42 shadowsocks 8 no

43 Yelp 8 yes

44 apple 7 yes

45 Automa�ic 7 yes

46 Azure 7 yes

47 cocos2d 7 no

48 couchbase 7 no

49 douban 7 yes

50 FriendsOfPHP 7 no

51 id-So�ware 7 yes

52 libgit2 7 no

53 stripe 7 yes

54 cloudera 6 yes

55 dropbox 6 yes

56 enormego 6 yes

57 Homebrew 6 no

58 icsharpcode 6 no

59 msgpack 6 no

60 nodejs 6 no

61 openresty 6 no

62 ParsePlatform 6 yes

63 raspberrypi 6 partly

64 spotify 6 yes

65 twilio 6 yes

66 yahoo 6 yes

67 android 5 partly

68 angular 5 partly

69 angular-ui 5 partly

70 applidium 5 yes

71 celluloid 5 no

72 cesanta 5 yes

73 cucumber 5 yes

74 FriendsOfSymfony 5 no

75 heroku 5 yes

76 JetBrains 5 partly

77 paypal 5 yes

78 plataformatec 5 yes

79 RailsApps 5 no

80 rspec 5 no

81 ServiceStack 5 yes

82 socketio 5 no

83 ValveSo�ware 5 yes

84 VerbalExpressions 5 no

71

Name of Organization on GitHub Top Repositories is commercial Organization

85 visionmedia 5 no

86 activerecord-hackery 4 no

87 CakeDC 4 partly

88 castleproject 4 no

89 chef 4 yes

90 collectiveidea 4 yes

91 composer 4 no

92 docopt 4 no

93 documentcloud 4 partly

94 Flipboard 4 yes

95 forkingdog 4 no

96 getsentry 4 yes

97 gliderlabs 4 yes

98 gorilla 4 no

99 Instagram 4 yes

100 intridea 4 yes

101 mapbox 4 yes

102 mutualmobile 4 yes

103 openstack 4 yes

104 owncloud 4 yes

105 phacility 4 yes

106 Qihoo360 4 yes

107 Reactive-Extensions 4 yes

108 sass 4 no

109 sourcegraph 4 yes

110 symfony 4 partly

111 tumblr 4 yes

112 venmo 4 yes

113 yhat 4 yes

Table 20: All Organizations having at least 4 top repositories

72

Firm Repos JS ObjC Go C Python Ruby Java PHP C++ C# CS Scala Hack

1 google 79 6 15 6 8 1 16 3 23 1

2 facebook 58 10 9 7 4 10 2 14 2

3 twi�er 48 3 2 4 3 4 2 30

4 Microso� 21 1 2 8 10

5 github 20 1 1 3 1 8 2 4

6 alibaba 20 4 12 4

7 linkedin 12 2 2 7 1

8 aws
81

11 1 1 2 1 2 1 2 1

9 yahoo 6 2 1 1 1 1

10 groupon 4 4

11 NetEase 2 1 1

12 yandex 2 1 1

13 eBay 2 2

14 SonyWWS 2 2

15 sony 1 1

16 awslabs
82

1 1

17 intel-iot-devkit 1 1

18 forcedotcom
83

1 1

19 amazonwebservices
84

1 1

20 developerforce
85

1 1

Table 21: Commercial most succesfull and most popular companies and their

GitHub projects’ programming languages. Source: GitHub API, October 2015

7
3

Name Name on GitHub Public Repositories Top Repositories On GitHub since

1 Adafruit Industries adafruit 469 8 2010

2 Airbnb airbnb 86 10 2011

3 Alibaba alibaba 87 19 2012

4 Apple apple 18 7 2015

5 Applidium applidium 15 5 2010

6 Automa�ic Automa�ic 279 7 2011

7 Amazon Web Services aws 49 10 2012

8 Microso� Azure Azure 148 7 2014

9 Bitly bitly 26 8 2010

10 Cesanta So�ware cesanta 24 5 2013

11 Chef So�ware, Inc. chef 284 4 2008

12 Cloudera cloudera 133 6 2009

13 Collective Idea collectiveidea 155 4 2008

14 (Cucumber) (cucumber) (52) (5) 2010

15 Docker docker 64 15 2013

16 Douban Inc. douban 38 7 2011

17 Dropbox dropbox 104 6 2011

18 elastic elastic 107 15 2014

19 (enormego) (enormego) (26) (6) 2009

20 Etsy, Inc. etsy 56 10 2010

21 Facebook facebook 149 56 2009

22 Flipboard Flipboard 19 4 2010

23 (Sentry) (getsentry) (79) (4) 2012

24 GitHub github 127 16 2008

25 (Glider Labs) (gliderlabs) (19) (4) 2014

26 Google google 681 85 2012

27 Google Samples googlesamples 184 10 2014

28 HashiCorp hashicorp 79 15 2011

29 Heroku heroku 488 5 2008

30 id So�ware id-So�ware 18 7 2012

31 Instagram Instagram 25 4 2011

32 INTRIDEA Inc. intridea 107 4 2008

33 KNP Labs KnpLabs 92 8 2010

34 LinkedIn linkedin 87 10 2010

35 Mapbox mapbox 558 4 2011

36 Microso� Microso� 405 33 2013

37 mongodb mongodb 54 16 2009

38 Mutual Mobile mutualmobile 60 4 2009

39 Net�ix, Inc. Net�ix 99 17 2011

40 OpenStack openstack 665 4 2010

41 ownCloud owncloud 95 4 2012

42 Parse ParsePlatform 56 6 2011

43 PayPal paypal 140 5 2010

74

Name Name on GitHub Public Repositories Top Repositories On GitHub since

44 Phacility phacility 6 4 2013

45 (Plataformatec) (plataformatec) (23) (5) 2009

46 Qihoo 360 Qihoo360 17 4 2013

47 Cloud Programmability Group Reactive-Extensions 38 4 2011

48 (ServiceStack) (ServiceStack) (32) (5) 2011

49 Shopify Shopify 265 9 2008

50 Sourcegraph sourcegraph 150 4 2013

51 Spotify spotify 131 6 2010

52 Square square 157 30 2009

53 Stripe stripe 66 7 2011

54 thoughtbot, inc. thoughtbot 221 23 2008

55 Tumblr tumblr 34 4 2010

56 Twilio twilio 47 6 2009

57 Twi�er, Inc. twi�er 135 18 2009

58 Valve So�ware ValveSo�ware 17 5 2012

59 Venmo venmo 73 4 2010

60 Xamarin xamarin 78 10 2011

61 Yahoo Inc. yahoo 330 6 2008

62 Yalantis Yalantis 36 13 2011

63 Yelp.com Yelp 149 8 2009

64 yhat yhat 102 4 2012

Table 22: Finally selected commercial �rms for observation. Bracketed �rms

are sorted out since they are not using an united webdomain.

Data source:
https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/organizations.csv

https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/commercial classification/

commercial classification of organizations.csv

75

https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/organizations.csv
https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/commercial_classification/commercial_classification_of_organizations.csv
https://git.zeitpulse.com/philipp/masterthesis-data/raw/master/csv/commercial_classification/commercial_classification_of_organizations.csv

Firm Rating Ratings count Level Culture and Values Career Opportunities Work-Life-Balance OS Repos. Top Repos. count

1 elastic 4.90 62 Very Satis�ed 4.80 4.80 4.50 107 15

2 Facebook 4.50 1297 Very Satis�ed 4.50 4.30 3.70 149 56

3 Airbnb 4.50 299 Very Satis�ed 4.70 4.30 3.90 86 10

4 Google 4.40 4665 Very Satis�ed 4.40 4.00 4.00 681 85

5 Square 4.40 155 Very Satis�ed 4.30 4.00 4.10 157 30

6 Google Samples 4.40 4665 Very Satis�ed 4.40 4.00 4.00 184 10

7 LinkedIn 4.40 1340 Very Satis�ed 4.50 4.10 4.10 87 10

8 Etsy, Inc. 4.30 38 Very Satis�ed 4.30 3.50 4.20 56 10

9 Twi�er, Inc. 4.00 400 Satis�ed 4.10 3.70 4.00 135 18

10 mongodb 4.00 135 Satis�ed 4.00 4.00 3.80 54 16

11 Microso� 3.90 12492 Satis�ed 3.70 3.60 3.60 405 33

12 Alibaba 3.90 42 Satis�ed 3.90 4.00 3.40 87 19

13 Net�ix, Inc. 3.70 544 Satis�ed 3.90 3.40 3.40 99 17

14 Amazon Web Services 3.40 7572 OK 3.30 3.40 2.70 49 10

Table 23: Firm ratings by employees (Source: Glassdoor API, 25.01.2016)

81

by Amazon.com

82

by Amazon.com

83

by Salesforce

84

by Amazon.com

85

by Salesforce

7
6

B.3 Regression Tables for H 1.1

Dependent variable:

ext. commits int. commits ext. commits int. commits

(1.1.5) (1.1.6) (1.1.7) (1.1.8)

int. commits 5.566
∗∗∗

0.453
∗∗∗

(0.448) (0.075)

ext. commits 0.009
∗∗∗

0.156
∗∗∗

(0.001) (0.026)

Constant −145.306 100.309
∗∗∗

381.728
∗∗

710.625
∗∗∗

(166.753) (6.572) (167.964) (93.460)

Observations 2,809 2,809 478 478

R
2

0.052 0.052 0.071 0.071

Adjusted R
2

0.052 0.052 0.069 0.069

Residual Std. Error 8,483.016 (df = 2807) 347.859 (df = 2807) 3,408.818 (df = 476) 1,997.843 (df = 476)

F Statistic 154.275
∗∗∗

(df = 1; 2807) 154.275
∗∗∗

(df = 1; 2807) 36.143
∗∗∗

(df = 1; 476) 36.143
∗∗∗

(df = 1; 476)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 24: Impact of internal commits on external commits (and v.v.) on ”Residual Projects” (Model

1.1.5 - 1.1.6) and ”Top Projects” older than 1 year (Model 1.1.7 - 1.1.8)

77

Dependent variable:

ext. commits int. commits ext. commits int. commits

(1.1.9) (1.1.10) (1.1.11) (1.1.12)

int. commits 5.751
∗∗∗

0.936
∗∗∗

(0.528) (0.040)

ext. commits 0.010
∗∗∗

0.864
∗∗∗

(0.001) (0.037)

Constant −238.115 121.186
∗∗∗ −318.675 519.123

∗∗

(232.686) (9.417) (249.478) (236.770)

Observations 1,900 1,900 132 132

R
2

0.059 0.059 0.809 0.809

Adjusted R
2

0.058 0.058 0.807 0.807

Residual Std. Error 9,718.195 (df = 1898) 409.982 (df = 1898) 2,805.891 (df = 130) 2,694.891 (df = 130)

F Statistic 118.705
∗∗∗

(df = 1; 1898) 118.705
∗∗∗

(df = 1; 1898) 550.484
∗∗∗

(df = 1; 130) 550.484
∗∗∗

(df = 1; 130)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 25: Impact of internal commits on external commits (and v.v.) on ”Residual Projects” older

than 1 year (Model 1.1.9 - 1.1.10) and ”Top Projects” younger than 1 year (Model 1.1.11 - 1.1.12)

78

Dependent variable:

ext. commits int. commits

(1.1.13) (1.1.14)

int. commits 2.323
∗

(1.225)

ext. commits 0.002
∗

(0.001)

Constant 190.823 58.289
∗∗∗

(180.326) (4.483)

Observations 909 909

R
2

0.004 0.004

Adjusted R
2

0.003 0.003

Residual Std. Error (df = 907) 4,983.821 134.877

F Statistic (df = 1; 907) 3.598
∗

3.598
∗

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 26: Impact of internal commits on external commits (and v.v.) on ”Residual Projects” younger

than 1 year (Model 1.1.13 - 1.1.14)

79

B.4 Regression Tables for H 1.2.1

Dependent variable:

issues by ext. users issues by �rm empl. users issues by ext. users issues by �rm empl. users

(5) (6) (7) (8)

issues by �rm empl. users 5.211
∗∗∗

34.605
∗∗∗

(0.448) (2.815)

issues by ext. users 0.010
∗∗∗

0.008
∗∗∗

(0.001) (0.001)

Constant 40.005
∗∗∗

0.357
∗∗∗

242.496
∗∗∗

2.892
∗∗∗

(2.717) (0.125) (47.815) (0.724)

Observations 2,412 2,412 414 414

R
2

0.053 0.053 0.268 0.268

Adjusted R
2

0.053 0.053 0.267 0.267

Residual Std. Error 132.237 (df = 2410) 5.851 (df = 2410) 898.292 (df = 412) 13.449 (df = 412)

F Statistic 135.324
∗∗∗

(df = 1; 2410) 135.324
∗∗∗

(df = 1; 2410) 151.164
∗∗∗

(df = 1; 412) 151.164
∗∗∗

(df = 1; 412)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 27: Impact of issue participation by �rm employed developers on external users (and v.v.) in

”Residual Projects” (Model 1.2.5 - 1.2.6) and ”Top Projects” older than 1 year (Model 1.2.7 - 1.2.8)

80

Dependent variable:

issues by ext. users issues by �rm empl. users issues by ext. users issues by �rm empl. users

(9) (10) (11) (12)

issues by �rm empl. users 5.051
∗∗∗

15.993
∗∗∗

(0.526) (3.744)

issues by ext. users 0.010
∗∗∗

0.009
∗∗∗

(0.001) (0.002)

Constant 47.408
∗∗∗

0.543
∗∗∗

179.710
∗∗∗ −0.124

(3.813) (0.180) (33.079) (0.892)

Observations 1,679 1,679 109 109

R
2

0.052 0.052 0.146 0.146

Adjusted R
2

0.052 0.052 0.138 0.138

Residual Std. Error 154.470 (df = 1677) 6.985 (df = 1677) 338.349 (df = 107) 8.075 (df = 107)

F Statistic 92.310
∗∗∗

(df = 1; 1677) 92.310
∗∗∗

(df = 1; 1677) 18.248
∗∗∗

(df = 1; 107) 18.248
∗∗∗

(df = 1; 107)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 28: Impact of issue participation by �rm employed developers on external users (and v.v.) in

”Residual Projects” older than 1 year (Model 1.2.9 - 1.2.10) and ”Top Projects” younger than 1 year

(Model 1.2.11 - 1.2.12)

81

Dependent variable:

issues by ext. users issues by �rm empl. users

(13) (14)

issues by �rm empl. users 11.839
∗∗∗

(2.545)

issues by ext. users 0.002
∗∗∗

(0.001)

Constant 22.359
∗∗∗

0.105
∗∗∗

(1.890) (0.029)

Observations 733 733

R
2

0.029 0.029

Adjusted R
2

0.027 0.027

Residual Std. Error (df = 731) 49.898 0.715

F Statistic (df = 1; 731) 21.636
∗∗∗

21.636
∗∗∗

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 29: Impact of issue participation of �rm employed users on external users (and v.v.) in ”Resid-

ual Projects” younger than 1 year (Model 1.2.13 - 1.2.14)

82

B.5 Regression Tables for H 1.2.2

83

Dependent variable:

Number of comments Comments by ext. developers Comments by �rm employed developers

(1.3.5) (1.3.6) (1.3.7) (1.3.8)

Content share by �rm employed developers −35,594.540 −35,082.530

(400,394.800) (385,606.700)

Comments by �rm employed developers 14.338
∗∗∗

(0.592)

Comments by ext. developers 0.038
∗∗∗

(0.002)

Constant 2,080.726
∗∗∗

2,037.550
∗∗∗

1,416.162
∗∗∗ −33.710

∗∗

(477.470) (459.836) (311.632) (16.254)

Observations 498 498 498 498

R
2

0.00002 0.00002 0.542 0.542

Adjusted R
2 −0.002 −0.002 0.541 0.541

Residual Std. Error (df = 496) 10,628.340 10,235.790 6,930.931 355.725

F Statistic (df = 1; 496) 0.008 0.008 585.804
∗∗∗

585.804
∗∗∗

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 30: Impact of participation by content share in issues’ comments (Model 1.3.5 - 1.3.6) and numbers of comment by �rm employed users on external

users (and v.v.) (Model 1.3.7 - 1.3.8) in ”Top Projects”

8
4

Dependent variable:

Number of comments Comments by ext. developers Comments by �rm employed developers

(1.3.9) (1.3.10) (1.3.11) (1.3.12)

Content share by �rm employed developers 4,611.045 4,577.814

(13,202.160) (12,945.400)

Comments by �rm employed developers 4.109
∗∗∗

(0.318)

Comments by ext. developers 0.018
∗∗∗

(0.001)

Constant 119.063
∗∗∗

116.157
∗∗∗

104.293
∗∗∗

0.832

(9.816) (9.625) (9.309) (0.631)

Observations 2,111 2,111 2,111 2,111

R
2

0.0001 0.0001 0.073 0.073

Adjusted R
2 −0.0004 −0.0004 0.073 0.073

Residual Std. Error (df = 2109) 450.873 442.104 425.589 28.056

F Statistic (df = 1; 2109) 0.122 0.125 166.993
∗∗∗

166.993
∗∗∗

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 31: Impact of participation by content share in issues’ comments (Model 1.3.9 - 1.3.10) and numbers of comment by �rm employed users on external

users (and v.v.) (Model 1.3.11 - 1.3.12) in ”Residual Projects”

8
5

B.6 Regression Tables and Data Summary for H 2.1

Dependent variable:

Top Project

(2.1.11) (2.1.12) (2.1.13) (2.1.14) (2.1.15) (2.1.16)

Age 0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.0002

(0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0002)

Forks1 2.125

(1.419)

Forks2 3.020
∗∗∗

(0.711)

Forks3 2.883
∗∗∗

(0.532)

Forks4 0.884
∗∗

(0.397)

Forks5 −2.017
∗∗∗

(0.315)

forks.today 0.007
∗∗∗

(0.001)

Constant −2.298
∗∗∗ −2.649

∗∗∗ −3.047
∗∗∗ −2.703

∗∗∗ −2.093
∗∗∗ −2.566

∗∗∗

(0.194) (0.218) (0.249) (0.281) (0.192) (0.238)

Observations 1,409 1,409 1,409 1,409 1,409 1,409

Log Likelihood −749.642 −741.173 −735.814 −748.297 −728.325 −501.374

Akaike Inf. Crit. 1,505.285 1,488.346 1,477.627 1,502.593 1,462.650 1,008.749

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 32: �e more forks a project gains in the beginning (i.e. �rst 3 - 6 months) the more likely it

is a top project in the long-run (Model 2.1.11 - 2.1.16)

86

Dependent variable:

Top Project

(2.1.17) (2.1.18) (2.1.19) (2.1.20)

Age 0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

(0.0001) (0.0001) (0.0002) (0.0001)

Forks1−2 5.695
∗∗∗

(1.271)

Forks2−3 5.199
∗∗∗

(0.804)

Forks3−4 3.445
∗∗∗

(0.684)

Forks4−5 −5.106
∗∗∗

(0.773)

Constant −2.681
∗∗∗ −3.310

∗∗∗ −3.588
∗∗∗ −0.788

∗∗∗

(0.219) (0.263) (0.336) (0.283)

Observations 1,409 1,409 1,409 1,409

Log Likelihood −740.234 −729.169 −737.423 −728.274

Akaike Inf. Crit. 1,486.467 1,464.338 1,480.846 1,462.547

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 33: If a projects gets forked in the beginning more o�en, the more likely it is a ”Top Project”

(Model 2.1.17 - 2.1.20)

87

Dependent variable:

Forks2 Forks3 Forks4 Forks5

(2.1.21) (2.1.22) (2.1.23) (2.1.24)

Age −0.00003
∗∗∗ −0.0001

∗∗∗ −0.0002
∗∗∗

0.0003
∗∗∗

(0.00001) (0.00001) (0.00001) (0.00001)

Ratio1 0.031
∗∗∗

(0.007)

Ratio2 0.060
∗∗∗

(0.009)

Ratio3 0.058
∗∗∗

(0.012)

Ratio4 −0.153
∗∗∗

(0.016)

Constant 0.113
∗∗∗

0.238
∗∗∗

0.486
∗∗∗

0.168
∗∗∗

(0.007) (0.010) (0.014) (0.019)

Observations 1,409 1,409 1,409 1,409

Log Likelihood 1,407.889 1,003.989 574.908 127.614

Akaike Inf. Crit. −2,809.778 −2,001.979 −1,143.817 −249.229

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 34: As the delay shows, number of ”Forks” are rising relatively over time (see table 41 for

details). �is maybe caused by network e�ects (the a�ention of a project in the beginning a�ects

the later a�ention bene�cial). �us, further analyses would be necessary to proof the pure e�ect of

”Ratio” on ”Forks” over time. (Model 2.1.21 - 2.1.31).

88

Dependent variable:

Subscribers1 Subscribers2 Subscribers3 Subscribers4 Subscribers2 Subscribers3 Subscribers4 Subscribers5 Subscribers3 Subscribers4 Subscribers5

(2.1.32) (2.1.33) (2.1.34) (2.1.35) (2.1.36) (2.1.37) (2.1.38) (2.1.39) (2.1.40) (2.1.41) (2.1.42)

Age −0.00000 −0.00001
∗∗∗ −0.00005

∗∗∗ −0.0001
∗∗∗ −0.00001

∗∗∗ −0.00005
∗∗∗ −0.0001

∗∗∗
0.0002

∗∗∗ −0.00005
∗∗∗ −0.0001

∗∗∗
0.0002

∗∗∗

(0.00000) (0.00000) (0.00000) (0.00001) (0.00000) (0.00000) (0.00001) (0.00001) (0.00000) (0.00001) (0.00001)

Ratio1 0.004
∗∗∗

0.021
∗∗∗

0.055
∗∗∗

(0.001) (0.004) (0.007)

Ratio2 0.023
∗∗∗

0.054
∗∗∗

0.079
∗∗∗

(0.003) (0.006) (0.011)

Ratio3 0.067
∗∗∗

0.097
∗∗∗ −0.190

∗∗∗

(0.006) (0.011) (0.016)

Ratio4 0.089
∗∗∗ −0.148

∗∗∗

(0.011) (0.016)

Constant 0.006
∗∗∗

0.069
∗∗∗

0.200
∗∗∗

0.546
∗∗∗

0.071
∗∗∗

0.207
∗∗∗

0.552
∗∗∗

0.176
∗∗∗

0.212
∗∗∗

0.562
∗∗∗

0.175
∗∗∗

(0.001) (0.004) (0.007) (0.013) (0.004) (0.007) (0.012) (0.019) (0.007) (0.012) (0.019)

Observations 1,409 1,409 1,409 1,409 1,409 1,409 1,409 1,409 1,409 1,409 1,409

Log Likelihood 4,296.766 2,453.283 1,565.419 701.254 2,446.640 1,539.586 705.850 108.943 1,535.701 690.719 133.812

Akaike Inf. Crit. −8,587.532 −4,900.567 −3,124.839 −1,396.507 −4,887.280 −3,073.172 −1,405.699 −211.885 −3,065.401 −1,375.438 −261.624

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 35: In�uence of ”Ratio” on number of ”Subscribers” (Model 2.1.32 - 2.1.42). See table 34 for possible explanation of e�ects (”Subscribers” behaves

similar to ”Forks”)

8
9

Dependent variable:

Forkstoday

(2.1.43) (2.1.44) (2.1.45) (2.1.46)

Age 0.180
∗∗∗

0.186
∗∗∗

0.186
∗∗∗

0.185
∗∗∗

(0.034) (0.034) (0.034) (0.034)

Ratio1 254.674
∗∗∗

(46.734)

Ratio2 194.085
∗∗∗

(43.119)

Ratio3 217.558
∗∗∗

(41.383)

Ratio4 135.234
∗∗∗

(40.749)

Constant −95.681
∗∗ −102.676

∗∗ −121.572
∗∗ −107.743

∗∗

(46.130) (46.954) (47.354) (48.734)

Observations 1,409 1,409 1,409 1,409

Log Likelihood −10,916.200 −10,920.850 −10,917.220 −10,925.430

Akaike Inf. Crit. 21,838.410 21,847.700 21,840.430 21,856.870

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 36: �e higher the code contribution share of �rm employed developers in the beginning, the

higher is the �nal number of forks (except between month 6 - 12) (Model 2.1.43 - 2.1.46)

90

Dependent variable:

Subscriberstoday

(2.1.47) (2.1.48) (2.1.49) (2.1.50)

Age 0.405
∗∗

0.430
∗∗∗

0.424
∗∗∗

0.434
∗∗∗

(0.163) (0.163) (0.163) (0.163)

Ratio1 1,053.216
∗∗∗

(226.797)

Ratio2 877.369
∗∗∗

(208.852)

Ratio3 753.878
∗∗∗

(201.218)

Ratio4 728.765
∗∗∗

(197.006)

Constant 77.437 28.895 17.185 −42.648

(223.868) (227.429) (230.250) (235.611)

Observations 1,409 1,409 1,409 1,409

Log Likelihood −13,141.840 −13,143.780 −13,145.570 −13,145.740

Akaike Inf. Crit. 26,289.680 26,293.550 26,297.130 26,297.480

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 37: �e higher the code contribution share of �rm employed developers in the beginning, the

higher is the �nal number of forks (except between month 3 - 6) (Model 2.1.47 - 2.1.50)

91

Dependent variable:

Forkstoday

(2.1.51) (2.1.52) (2.1.53) (2.1.54)

Age 0.185
∗∗∗

0.188
∗∗∗

0.185
∗∗∗

0.180
∗∗∗

(0.034) (0.034) (0.034) (0.034)

Ratio1 2 287.570
∗∗∗

(50.896)

Ratio2 3 281.414
∗∗∗

(49.170)

Ratio3 4 135.234
∗∗∗

(40.749)

Ratio4 5 135.903
∗∗∗

(48.874)

Constant −114.287
∗∗ −133.835

∗∗∗ −107.743
∗∗ −108.402

∗∗

(46.716) (47.585) (48.734) (50.104)

Observations 1,409 1,409 1,409 1,409

Log Likelihood −10,915.110 −10,914.710 −10,925.430 −10,927.070

Akaike Inf. Crit. 21,836.220 21,835.410 21,856.870 21,860.130

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 38: Code contribution share of �rm employed developers in the �rst year has the biggest

positive impact on the �nal number of forks (Model 2.1.51 - 2.1.54)

92

Dependent variable:

Subscriberstoday

(2.1.55) (2.1.56) (2.1.57) (2.1.58)

Age 0.424
∗∗∗

0.436
∗∗∗

0.434
∗∗∗

0.402
∗∗

(0.163) (0.163) (0.163) (0.163)

Ratio1 2 1,241.737
∗∗∗

(246.863)

Ratio2 3 1,109.494
∗∗∗

(238.874)

Ratio3 4 728.765
∗∗∗

(197.006)

Ratio4 5 816.083
∗∗∗

(236.158)

Constant −10.923 −64.506 −42.648 −81.107

(226.587) (231.175) (235.611) (242.100)

Observations 1,409 1,409 1,409 1,409

Log Likelihood −13,140.000 −13,141.840 −13,145.740 −13,146.610

Akaike Inf. Crit. 26,286.000 26,289.670 26,297.480 26,299.210

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 39: Code contribution share of �rm employed developers in the �rst year has the biggest

positive impact on the �nal number of subscribers (Model 2.1.55 - 2.1.58)

93

Dependent variable:

Top Project

(2.1.59) (2.1.60) (2.1.61) (2.1.62)

Age 0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)

Ratio1−2 2.330
∗∗∗

(0.212)

Ratio2−3 2.408
∗∗∗

(0.213)

Ratio3−4 1.758
∗∗∗

(0.178)

Ratio4−5 2.488
∗∗∗

(0.230)

Constant −2.984
∗∗∗ −3.201

∗∗∗ −3.160
∗∗∗ −3.579

∗∗∗

(0.219) (0.228) (0.227) (0.249)

Observations 1,409 1,409 1,409 1,409

Log Likelihood −687.044 −682.113 −699.158 −685.443

Akaike Inf. Crit. 1,380.088 1,370.227 1,404.317 1,376.885

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 40: �e higher the code contribution share of �rm employed developers in the beginning the

more likely it is a ”Top Project” in the long-run (Model 2.1.59 - 2.1.62)

94

Statistic N Mean St. Dev. Min Max

Forkstoday 1,409 178.048 571.655 1 11,670

Subscriberstoday 1,409 773.444 2,744.954 1 56,785

Number of Code Contributionstotal 1,409 1,140,249.000 0.000 1,140,249 1,140,249

Number of Code Contributions1 1,409 13.781 61.867 0 1,040

Number of Code Contributions2 1,409 39.065 156.261 0 2,320

Number of Code Contributions3 1,409 85.478 326.570 0 4,476

Number of Code Contributions4 1,409 171.919 575.452 0 7,054

Number of Code Contributions5 1,409 499.018 2,836.235 0 65,040

Ratio1 1,409 0.169 0.320 0.000 1.000

Ratio2 1,409 0.221 0.348 0.000 1.000

Ratio3 1,409 0.283 0.361 0.000 1.000

Ratio4 1,409 0.359 0.370 0.000 1.000

Ratio5 1,409 0.474 0.359 0.000 1.000

Subscribers1 1,409 0.007 0.012 0.000 0.200

Subscribers2 1,409 0.060 0.043 0.000 0.333

Subscribers3 1,409 0.161 0.086 0.000 0.485

Subscribers4 1,409 0.392 0.165 0.000 1.000

Subscribers5 1,409 0.381 0.248 0.000 1.000

Forks1 1,409 0.012 0.040 0.000 1.000

Forks2 1,409 0.077 0.091 0.000 1.000

Forks3 1,409 0.162 0.125 0.000 1.000

Forks4 1,409 0.305 0.177 0.000 1.000

Forks5 1,409 0.445 0.257 0.000 1.000

Ratio1−2 1,409 0.195 0.293 0.000 1.000

Ratio2−3 1,409 0.252 0.304 0.000 1.000

Ratio3−4 1,409 0.359 0.370 0.000 1.000

Ratio4−5 1,409 0.416 0.308 0.000 1.000

Subscribers1−2 1,409 0.033 0.024 0.000 0.200

Subscribers2−3 1,409 0.110 0.060 0.000 0.333

Subscribers3−4 1,409 0.277 0.111 0.000 0.500

Subscribers4−5 1,409 0.386 0.062 0.167 0.500

Forks1−2 1,409 0.044 0.050 0.000 0.500

Forks2−3 1,409 0.119 0.085 0.000 0.500

Forks3−4 1,409 0.233 0.113 0.000 0.500

Forks4−5 1,409 0.375 0.088 0.000 0.500

Table 41: Trend of social metrics and contribution ratio over time. All observed projects are at least

4 years old. Normalized values (between 0 - 1) for ”Forks”, ”Subscribers” and ”Ratio” are increasing

over time in most cases.

95

B.7 Regression Tables for H 3

Dependent variable:

Stars Subscribers Forks

(3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (3.8) (3.9) (3.10) (3.11) (3.12)

Ratio 295.609
∗∗∗

278.398
∗∗∗

129.899 152.407
∗

7.184 7.068 18.616
∗∗∗

17.985
∗∗∗

51.697
∗∗∗

39.361
∗∗

26.293 29.970

(75.069) (79.011) (83.121) (83.466) (6.010) (6.284) (6.284) (6.322) (18.318) (19.329) (20.865) (21.002)

Age 0.367
∗∗∗

0.437
∗∗∗

0.443
∗∗∗

0.494
∗∗∗

0.031
∗∗∗

0.036
∗∗∗

0.037
∗∗∗

0.039
∗∗∗

0.129
∗∗∗

0.143
∗∗∗

0.151
∗∗∗

0.158
∗∗∗

(0.047) (0.049) (0.050) (0.051) (0.004) (0.004) (0.004) (0.004) (0.011) (0.012) (0.013) (0.013)

lang C# −214.631 169.676 −4.257 10.249 19.293 59.294

(178.693) (196.570) (14.212) (14.889) (43.714) (49.463)

lang C++ 116.238 332.343
∗∗

1.946 25.198
∗∗

33.039 83.661
∗∗

(167.244) (166.608) (13.301) (12.620) (40.913) (41.924)

lang Go 239.094 334.448
∗ −4.575 12.997 41.503 59.721

(172.819) (183.499) (13.745) (13.899) (42.277) (46.174)

lang Java 157.940 282.315
∗

25.440
∗∗

25.214
∗∗

77.153
∗∗

109.166
∗∗∗

(155.887) (159.385) (12.398) (12.073) (38.135) (40.106)

lang JavaScript 208.857 592.722
∗∗∗

14.696 22.251
∗

33.642 126.760
∗∗∗

(152.583) (157.994) (12.135) (11.967) (37.326) (39.756)

lang Objective-C 362.103
∗

363.975
∗ −0.915 7.949 44.242 72.779

(187.742) (191.544) (14.932) (14.509) (45.927) (48.198)

lang PHP −216.619 108.148 1.185 2.580 −28.608 61.594

(177.471) (200.353) (14.115) (15.176) (43.415) (50.415)

lang Python −145.320 108.349 −31.810
∗∗ −2.574 −12.433 40.406

(157.632) (163.375) (12.537) (12.375) (38.562) (41.110)

lang Ruby −230.824 −30.721 −32.958
∗∗∗ −13.470 −50.827 2.041

(155.093) (167.303) (12.335) (12.673) (37.940) (42.098)

�rm airbnb 1,783.590
∗∗∗

1,872.003
∗∗∗

157.228
∗∗∗

170.044
∗∗∗

249.295
∗∗∗

261.275
∗∗∗

(306.332) (317.847) (23.159) (24.076) (76.896) (79.980)

9
6

Dependent variable:

Stars Subscribers Forks

(3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (3.8) (3.9) (3.10) (3.11) (3.12)

�rm alibaba 721.450
∗∗∗

731.614
∗∗∗

142.658
∗∗∗

142.330
∗∗∗

348.882
∗∗∗

335.851
∗∗∗

(257.418) (265.678) (19.461) (20.124) (64.618) (66.852)

�rm apple 3,988.731
∗∗∗

4,078.281
∗∗∗

308.373
∗∗∗

312.584
∗∗∗

567.897
∗∗∗

586.710
∗∗∗

(524.956) (522.366) (39.687) (39.567) (131.776) (131.443)

�rm applidium 444.278 427.531 20.273 28.301 37.993 41.116

(655.790) (660.620) (49.578) (50.039) (164.618) (166.231)

�rm Automa�ic 347.271
∗

285.364 153.892
∗∗∗

159.146
∗∗∗

33.362 13.352

(183.921) (207.865) (13.904) (15.745) (46.168) (52.305)

�rm aws 450.729
∗

492.689
∗

47.916
∗∗

57.181
∗∗∗

122.577
∗

125.413
∗

(259.128) (270.254) (19.590) (20.471) (65.047) (68.004)

�rm Azure 197.388 223.868 36.238
∗∗

42.884
∗∗∗

72.173 73.259

(192.978) (210.404) (14.589) (15.937) (48.442) (52.944)

�rm bitly 91.677 114.545 17.437 27.925 −60.302 −40.775

(380.401) (388.841) (28.758) (29.453) (95.489) (97.844)

�rm cesanta 378.819 532.016 26.698 40.404 95.627 144.460

(391.038) (402.779) (29.562) (30.509) (98.160) (101.351)

�rm chef 57.765 342.192 41.216
∗∗∗

71.395
∗∗∗

10.695 75.783

(180.801) (212.299) (13.669) (16.081) (45.385) (53.421)

�rm cloudera 158.901 171.780 23.838 21.199 36.376 11.930

(249.194) (260.622) (18.839) (19.741) (62.553) (65.580)

�rm collectiveidea −197.327 39.931 −45.061
∗∗ −16.310 −113.033 −54.816

(283.407) (303.640) (21.426) (23.000) (71.142) (76.405)

�rm docker 1,833.834
∗∗∗

1,803.627
∗∗∗

154.281
∗∗∗

161.640
∗∗∗

418.454
∗∗∗

429.360
∗∗∗

(272.022) (293.341) (20.565) (22.219) (68.284) (73.813)

�rm douban 208.868 305.613 15.831 31.079 23.678 45.856

(306.898) (314.065) (23.201) (23.789) (77.039) (79.028)

9
7

Dependent variable:

Stars Subscribers Forks

(3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (3.8) (3.9) (3.10) (3.11) (3.12)

�rm dropbox 469.635
∗

600.255
∗∗

35.674
∗

50.410
∗∗

62.852 84.987

(260.330) (269.009) (19.681) (20.376) (65.349) (67.690)

�rm elastic 611.492
∗∗∗

652.659
∗∗∗

72.232
∗∗∗

77.962
∗∗∗

171.865
∗∗∗

168.103
∗∗∗

(210.873) (224.926) (15.942) (17.037) (52.934) (56.598)

�rm etsy 752.616
∗∗∗

809.325
∗∗∗

42.131
∗∗

52.976
∗∗

75.912 80.411

(277.259) (287.605) (20.961) (21.785) (69.598) (72.370)

�rm facebook 2,394.111
∗∗∗

2,384.316
∗∗∗

171.279
∗∗∗

176.552
∗∗∗

384.147
∗∗∗

380.714
∗∗∗

(184.613) (191.626) (13.957) (14.515) (46.342) (48.219)

�rm Flipboard 3,845.847
∗∗∗

3,760.156
∗∗∗

182.437
∗∗∗

183.684
∗∗∗

388.654
∗∗

363.904
∗∗

(656.115) (659.318) (49.602) (49.941) (164.700) (165.904)

�rm github 898.635
∗∗∗

1,037.884
∗∗∗

34.714
∗

53.426
∗∗∗

187.585
∗∗∗

223.290
∗∗∗

(256.875) (269.861) (19.420) (20.441) (64.481) (67.905)

�rm google 720.257
∗∗∗

727.488
∗∗∗

53.652
∗∗∗

58.067
∗∗∗

133.897
∗∗∗

130.516
∗∗∗

(146.826) (155.824) (11.100) (11.803) (36.857) (39.210)

�rm googlesamples 501.872
∗∗

496.091
∗∗

43.458
∗∗

39.813
∗∗

162.108
∗∗∗

132.682
∗∗

(227.162) (242.156) (17.173) (18.342) (57.023) (60.934)

�rm hashicorp 814.807
∗∗∗

791.444
∗∗∗

44.781
∗∗

53.007
∗∗

109.553
∗

123.786
∗

(254.954) (280.208) (19.275) (21.225) (63.999) (70.508)

�rm heroku 89.603 177.261 15.988 31.161
∗∗

72.618
∗

92.963
∗∗

(165.134) (186.053) (12.484) (14.093) (41.452) (46.816)

�rm id-So�ware 1,886.755 1,805.205 336.544
∗∗∗

328.951
∗∗∗

594.253 578.166

(1,447.476) (1,439.507) (109.429) (109.037) (363.350) (362.222)

�rm Instagram 752.507 880.403 39.559 56.610 176.467 201.123

(655.800) (657.806) (49.578) (49.826) (164.621) (165.523)

�rm intridea 181.327 321.635 −24.038 −1.633 −36.053 2.153

(308.743) (323.098) (23.341) (24.473) (77.502) (81.301)

9
8

Dependent variable:

Stars Subscribers Forks

(3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (3.8) (3.9) (3.10) (3.11) (3.12)

�rm KnpLabs 9.014 137.359 −0.787 12.789 −16.603 −12.197

(223.086) (267.556) (16.865) (20.266) (56.000) (67.325)

�rm linkedin 325.648 280.647 24.240 26.410 33.529 14.243

(241.938) (252.207) (18.291) (19.104) (60.732) (63.463)

�rm mapbox 185.569 −48.125 80.295
∗∗∗

78.695
∗∗∗

26.587 −14.349

(151.975) (170.937) (11.489) (12.948) (38.149) (43.013)

�rm Microso� 401.146
∗∗

440.668
∗∗

47.493
∗∗∗

52.144
∗∗∗

96.519
∗∗

97.017
∗∗

(162.492) (181.612) (12.284) (13.756) (40.789) (45.699)

�rm mongodb 572.687
∗∗

605.178
∗∗

60.054
∗∗∗

69.642
∗∗∗

203.993
∗∗∗

211.318
∗∗∗

(286.179) (291.850) (21.635) (22.107) (71.838) (73.438)

�rm mutualmobile 794.332
∗

681.476 34.910 40.099 111.917 95.217

(432.681) (445.379) (32.711) (33.736) (108.613) (112.070)

�rm Net�ix 509.045
∗∗

451.850
∗∗

232.128
∗∗∗

230.588
∗∗∗

70.328 40.937

(200.325) (215.458) (15.145) (16.320) (50.286) (54.216)

�rm openstack 162.883 354.423
∗

13.372 35.155
∗∗

64.127 100.846
∗∗

(166.677) (188.503) (12.601) (14.278) (41.840) (47.433)

�rm owncloud 245.363 293.141 94.300
∗∗∗

104.324
∗∗∗

84.892 82.323

(220.658) (242.050) (16.682) (18.334) (55.390) (60.907)

�rm ParsePlatform 431.926 353.046 56.053
∗∗

60.203
∗∗∗

118.252 103.283

(289.122) (298.425) (21.858) (22.605) (72.576) (75.093)

�rm paypal 88.295 56.179 9.617 15.543 16.517 4.902

(196.640) (210.941) (14.866) (15.978) (49.361) (53.079)

�rm phacility 1,354.084
∗∗

1,318.708
∗∗

155.553
∗∗∗

159.946
∗∗∗

174.756 158.418

(658.868) (662.543) (49.810) (50.185) (165.391) (166.715)

�rm Qihoo360 943.963
∗

1,053.359
∗

122.062
∗∗∗

126.461
∗∗∗

317.453
∗∗

339.558
∗∗

(558.211) (557.352) (42.201) (42.217) (140.124) (140.246)

9
9

Dependent variable:

Stars Subscribers Forks

(3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (3.8) (3.9) (3.10) (3.11) (3.12)

�rm Reactive-Extensions 608.570
∗

411.081 26.069 24.826 48.994 13.200

(362.725) (369.390) (27.422) (27.980) (91.052) (92.949)

�rm Shopify 295.762 467.720
∗∗

105.086
∗∗∗

127.295
∗∗∗

14.280 58.401

(203.489) (224.093) (15.384) (16.974) (51.081) (56.388)

�rm sourcegraph 180.876 150.278 0.193 7.189 25.492 36.502

(247.783) (273.833) (18.732) (20.742) (62.199) (68.904)

�rm spotify 264.807 328.380 45.336
∗∗∗

51.815
∗∗∗

33.513 31.464

(227.333) (238.452) (17.186) (18.062) (57.066) (60.002)

�rm square 1,093.104
∗∗∗

1,109.454
∗∗∗

70.649
∗∗∗

76.974
∗∗∗

166.484
∗∗∗

163.711
∗∗∗

(193.279) (210.141) (14.612) (15.917) (48.517) (52.878)

�rm stripe 238.656 323.727 29.079 44.894
∗∗

23.239 45.943

(284.560) (295.828) (21.513) (22.408) (71.431) (74.439)

�rm thoughtbot 514.152
∗∗∗

684.286
∗∗∗

9.095 32.676
∗∗

29.911 73.026

(195.882) (219.319) (14.809) (16.613) (49.171) (55.187)

�rm tumblr 439.802 445.527 43.491 52.326
∗

43.340 43.519

(360.833) (369.461) (27.279) (27.985) (90.577) (92.967)

�rm twilio 121.696 53.474 23.703 29.964 21.738 6.643

(351.376) (358.265) (26.564) (27.137) (88.204) (90.150)

�rm twi�er 779.237
∗∗∗

762.750
∗∗∗

166.364
∗∗∗

172.280
∗∗∗

69.571 64.321

(230.516) (240.739) (17.427) (18.235) (57.865) (60.577)

�rm ValveSo�ware 961.506
∗

1,006.940
∗

135.571
∗∗∗

135.791
∗∗∗

205.071 217.620

(558.226) (555.752) (42.202) (42.096) (140.128) (139.844)

�rm venmo 436.297 462.792 34.925 47.095
∗∗

46.361 53.875

(302.225) (315.025) (22.848) (23.862) (75.865) (79.269)

�rm xamarin 143.419 239.294 127.241
∗∗∗

134.535
∗∗∗

184.614
∗∗∗

193.921
∗∗∗

(265.400) (298.732) (20.064) (22.628) (66.622) (75.170)

1
0
0

Dependent variable:

Stars Subscribers Forks

(3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (3.8) (3.9) (3.10) (3.11) (3.12)

�rm yahoo 291.255
∗

88.268 15.581 13.410 45.036 4.177

(172.914) (190.246) (13.072) (14.410) (43.405) (47.871)

�rm Yalantis 1,222.287
∗∗∗

1,197.076
∗∗∗

77.274
∗∗∗

79.524
∗∗∗

266.267
∗∗∗

248.290
∗∗∗

(352.406) (365.651) (26.642) (27.697) (88.462) (92.009)

�rm Yelp 183.684 338.035 12.692 32.249
∗

34.810 65.535

(225.708) (239.584) (17.063) (18.148) (56.658) (60.286)

�rm yhat 710.520 767.158 29.902 44.637 84.530 97.330

(471.268) (476.262) (35.628) (36.075) (118.299) (119.841)

Constant −0.236 −70.590 −434.208
∗∗∗ −764.217

∗∗∗
48.363

∗∗∗
47.700

∗∗∗ −20.544
∗ −39.926

∗∗∗ −23.486 −43.139 −113.655
∗∗∗ −192.851

∗∗∗

(60.212) (154.968) (139.704) (195.611) (4.821) (12.325) (10.562) (14.817) (14.692) (37.910) (35.069) (49.222)

Observations 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419

Log Likelihood −29,905.750 −29,877.320 −29,692.650 −29,668.010 −21,273.000 −21,221.860 −20,863.760 −20,845.730 −25,083.110 −25,063.340 −24,966.870 −24,950.480

Akaike Inf. Crit. 59,817.500 59,778.650 59,505.300 59,474.010 42,552.000 42,467.720 41,847.520 41,829.460 50,172.220 50,150.680 50,053.740 50,038.950

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 42: Detailed Regression Table: Impact of ”Age” and ”Ratio” on ”Stars”, ”Subscribers” and ”Forks” through Fi�ing

Generalized Linear Models with dummy variables for Firms and Programming Languages. Using (a) dummy variables for

each Firm in model 3.3, 3.7 and 3.11 (b) dummy variables for each Language in model 3.2, 3.6, 3.10 (c) dummy variables

for each Firm and Language in model 3.4, 3.8 and 3.12

1
0
1

Dependent variable:

Number of Issues Number of Contributors Top Project

normal normal logistic

(3.13) (3.14) (3.15) (3.16) (3.17) (3.18) (3.19) (3.20) (3.21) (3.22) (3.23) (3.24)

ratio 2.147 2.006 7.861
∗

7.612
∗ −2.417 −2.647 1.391 1.402 2.025

∗∗∗
1.727

∗∗∗
1.906

∗∗∗
1.753

∗∗∗

(3.717) (3.930) (4.235) (4.275) (1.911) (2.005) (2.051) (2.067) (0.155) (0.166) (0.191) (0.197)

age 0.015
∗∗∗

0.017
∗∗∗

0.021
∗∗∗

0.022
∗∗∗

0.018
∗∗∗

0.019
∗∗∗

0.020
∗∗∗

0.021
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

0.001
∗∗∗

(0.002) (0.002) (0.003) (0.003) (0.001) (0.001) (0.001) (0.001) (0.0001) (0.0001) (0.0001) (0.0001)

lang C# 10.769 15.255 −2.302 −3.798 −0.439 0.301

(8.887) (10.067) (4.535) (4.869) (0.272) (0.368)

lang C++ 14.470
∗

17.171
∗∗

2.457 6.712 −0.320 0.555
∗

(8.318) (8.533) (4.244) (4.127) (0.247) (0.307)

lang Go 22.068
∗∗

14.360 6.397 2.801 0.151 0.391

(8.595) (9.398) (4.386) (4.545) (0.252) (0.321)

lang Java 14.278
∗

17.304
∗∗ −5.369 −3.103 −0.678

∗∗∗ −0.717
∗∗

(7.753) (8.163) (3.956) (3.948) (0.232) (0.285)

lang JavaScript 12.686
∗

17.803
∗∗ −2.354 3.703 −1.619

∗∗∗ −1.202
∗∗∗

(7.588) (8.092) (3.872) (3.913) (0.254) (0.302)

lang Objective-C 4.762 5.631 −6.667 −4.925 −0.120 −0.463

(9.337) (9.810) (4.765) (4.744) (0.280) (0.348)

lang PHP 16.926
∗

8.654 −3.341 −0.999 −0.847
∗∗∗ −0.408

(8.826) (10.261) (4.504) (4.962) (0.289) (0.391)

1
0
2

Dependent variable:

Number of Issues Number of Contributors Top Project

normal normal logistic

(3.13) (3.14) (3.15) (3.16) (3.17) (3.18) (3.19) (3.20) (3.21) (3.22) (3.23) (3.24)

lang Python 3.092 7.609 12.824
∗∗∗

2.975 −1.414
∗∗∗ −1.162

∗∗∗

(7.840) (8.367) (4.000) (4.047) (0.259) (0.318)

lang Ruby −0.052 5.067 −1.393 −2.457 −1.655
∗∗∗ −1.517

∗∗∗

(7.713) (8.568) (3.936) (4.144) (0.248) (0.322)

�rm airbnb 17.277 19.858 17.225
∗∗

23.634
∗∗∗

3.062
∗∗∗

4.697
∗∗∗

(15.609) (16.279) (7.558) (7.873) (0.569) (0.611)

�rm alibaba 22.277
∗

22.852
∗

2.369 7.964 3.094
∗∗∗

3.969
∗∗∗

(13.116) (13.607) (6.351) (6.580) (0.514) (0.554)

�rm apple 23.867 26.692 131.388
∗∗∗

132.286
∗∗∗

6.461
∗∗∗

6.896
∗∗∗

(26.748) (26.753) (12.952) (12.938) (1.150) (1.174)

�rm applidium 5.866 12.765 −3.683 4.679 3.300
∗∗∗

4.150
∗∗∗

(33.415) (33.834) (16.180) (16.362) (0.992) (1.037)

�rm Automa�ic 37.468
∗∗∗

38.024
∗∗∗

11.555
∗∗

15.210
∗∗∗

1.441
∗∗∗

2.388
∗∗∗

(9.371) (10.646) (4.538) (5.148) (0.559) (0.620)

�rm aws 18.783 20.934 15.376
∗∗

21.263
∗∗∗

2.162
∗∗∗

3.118
∗∗∗

(13.203) (13.841) (6.393) (6.694) (0.539) (0.580)

�rm Azure 26.153
∗∗∗

26.499
∗∗

18.567
∗∗∗

24.545
∗∗∗

1.169
∗∗

1.779
∗∗∗

1
0
3

Dependent variable:

Number of Issues Number of Contributors Top Project

normal normal logistic

(3.13) (3.14) (3.15) (3.16) (3.17) (3.18) (3.19) (3.20) (3.21) (3.22) (3.23) (3.24)

(9.833) (10.776) (4.761) (5.211) (0.553) (0.597)

�rm bitly −7.492 −3.982 −6.882 −4.807 2.773
∗∗∗

3.309
∗∗∗

(19.383) (19.914) (9.386) (9.631) (0.646) (0.684)

�rm cesanta 15.082 23.531 17.458
∗

21.512
∗∗

2.835
∗∗∗

3.213
∗∗∗

(19.925) (20.628) (9.648) (9.976) (0.692) (0.729)

�rm chef 22.877
∗∗

31.331
∗∗∗

16.439
∗∗∗

23.568
∗∗∗ −0.379 1.402

∗∗

(9.212) (10.873) (4.461) (5.258) (0.641) (0.697)

�rm cloudera 9.800 8.119 6.025 12.201
∗

1.217
∗∗

2.206
∗∗∗

(12.697) (13.348) (6.148) (6.455) (0.592) (0.625)

�rm collectiveidea −10.260 −2.599 −9.977 −3.410 −0.080 1.598
∗∗

(14.440) (15.551) (6.992) (7.521) (0.681) (0.731)

�rm docker 100.533
∗∗∗

101.238
∗∗∗

61.459
∗∗∗

63.974
∗∗∗

3.918
∗∗∗

4.346
∗∗∗

(13.860) (15.023) (6.712) (7.266) (0.531) (0.585)

�rm douban 3.401 8.936 −0.517 2.190 2.503
∗∗∗

3.583
∗∗∗

(15.637) (16.085) (7.572) (7.779) (0.615) (0.661)

�rm dropbox 18.458 23.230
∗

11.241
∗

14.929
∗∗

2.229
∗∗∗

3.268
∗∗∗

(13.265) (13.777) (6.423) (6.663) (0.601) (0.642)

1
0
4

Dependent variable:

Number of Issues Number of Contributors Top Project

normal normal logistic

(3.13) (3.14) (3.15) (3.16) (3.17) (3.18) (3.19) (3.20) (3.21) (3.22) (3.23) (3.24)

�rm elastic 56.926
∗∗∗

57.240
∗∗∗

26.492
∗∗∗

32.473
∗∗∗

2.499
∗∗∗

3.557
∗∗∗

(10.745) (11.520) (5.203) (5.571) (0.492) (0.540)

�rm etsy 8.063 10.800 7.771 13.172
∗

2.540
∗∗∗

3.837
∗∗∗

(14.127) (14.730) (6.841) (7.123) (0.545) (0.587)

�rm facebook 55.298
∗∗∗

57.411
∗∗∗

35.655
∗∗∗

39.469
∗∗∗

3.909
∗∗∗

4.961
∗∗∗

(9.407) (9.814) (4.555) (4.746) (0.438) (0.482)

�rm Flipboard 26.656 28.141 18.759 26.441 5.318
∗∗∗

6.601
∗∗∗

(33.431) (33.767) (16.188) (16.330) (1.197) (1.241)

�rm github 13.649 18.961 49.316
∗∗∗

55.222
∗∗∗

2.935
∗∗∗

4.204
∗∗∗

(13.089) (13.821) (6.338) (6.684) (0.512) (0.577)

�rm google 37.187
∗∗∗

38.032
∗∗∗

16.524
∗∗∗

19.939
∗∗∗

2.894
∗∗∗

3.743
∗∗∗

(7.481) (7.981) (3.623) (3.859) (0.407) (0.438)

�rm googlesamples 12.768 10.421 11.100
∗∗

18.256
∗∗∗

2.163
∗∗∗

3.243
∗∗∗

(11.575) (12.402) (5.605) (5.998) (0.521) (0.564)

�rm hashicorp 53.445
∗∗∗

54.075
∗∗∗

32.248
∗∗∗

35.202
∗∗∗

3.328
∗∗∗

3.662
∗∗∗

(12.991) (14.351) (6.290) (6.940) (0.510) (0.580)

�rm heroku 7.694 10.957 5.035 10.236
∗∗

0.098 1.432
∗∗

(8.414) (9.529) (4.074) (4.608) (0.595) (0.633)

1
0
5

Dependent variable:

Number of Issues Number of Contributors Top Project

normal normal logistic

(3.13) (3.14) (3.15) (3.16) (3.17) (3.18) (3.19) (3.20) (3.21) (3.22) (3.23) (3.24)

�rm id-So�ware −7.908 −11.441 −8.110 −10.127 15.225 15.063

(73.753) (73.724) (35.713) (35.654) (324.744) (324.744)

�rm Instagram 27.182 32.765 15.720 22.539 5.015
∗∗∗

6.458
∗∗∗

(33.415) (33.690) (16.180) (16.293) (1.219) (1.252)

�rm intridea 2.502 8.195 3.275 9.105 1.146
∗

2.856
∗∗∗

(15.731) (16.547) (7.618) (8.003) (0.682) (0.729)

�rm KnpLabs 5.080 9.419 7.771 13.198
∗∗

1.429
∗∗∗

2.141
∗∗∗

(11.367) (13.703) (5.504) (6.627) (0.548) (0.642)

�rm linkedin 8.258 7.944 3.720 8.295 2.126
∗∗∗

3.300
∗∗∗

(12.328) (12.917) (5.969) (6.247) (0.541) (0.579)

�rm mapbox 18.398
∗∗

15.918
∗

8.194
∗∗

9.834
∗∗ −0.084 1.051

(7.744) (8.755) (3.750) (4.234) (0.635) (0.663)

�rm Microso� 23.334
∗∗∗

22.830
∗∗

17.604
∗∗∗

23.280
∗∗∗

2.498
∗∗∗

2.927
∗∗∗

(8.280) (9.301) (4.009) (4.498) (0.435) (0.483)

�rm mongodb 3.715 6.473 47.271
∗∗∗

50.914
∗∗∗

2.327
∗∗∗

3.374
∗∗∗

(14.582) (14.947) (7.061) (7.229) (0.554) (0.592)

�rm mutualmobile 15.365 19.738 6.313 14.501 2.640
∗∗∗

3.668
∗∗∗

1
0
6

Dependent variable:

Number of Issues Number of Contributors Top Project

normal normal logistic

(3.13) (3.14) (3.15) (3.16) (3.17) (3.18) (3.19) (3.20) (3.21) (3.22) (3.23) (3.24)

(22.046) (22.810) (10.675) (11.031) (0.744) (0.806)

�rm Net�ix 19.113
∗

17.219 11.074
∗∗

16.565
∗∗∗

2.130
∗∗∗

3.333
∗∗∗

(10.207) (11.035) (4.943) (5.337) (0.471) (0.520)

�rm openstack 6.710 13.118 63.274
∗∗∗

66.251
∗∗∗

0.421 1.962
∗∗∗

(8.493) (9.654) (4.112) (4.669) (0.639) (0.689)

�rm owncloud 82.412
∗∗∗

85.365
∗∗∗

23.018
∗∗∗

28.135
∗∗∗

1.799
∗∗∗

2.691
∗∗∗

(11.243) (12.397) (5.444) (5.995) (0.655) (0.710)

�rm ParsePlatform 19.117 20.497 11.729 17.265
∗∗

2.467
∗∗∗

3.561
∗∗∗

(14.732) (15.284) (7.133) (7.391) (0.606) (0.646)

�rm paypal 4.931 5.371 5.610 10.504
∗∗

0.746 1.847
∗∗∗

(10.019) (10.803) (4.852) (5.225) (0.598) (0.634)

�rm phacility 54.564 55.098 49.630
∗∗∗

52.187
∗∗∗

3.822
∗∗∗

4.409
∗∗∗

(33.571) (33.932) (16.256) (16.410) (1.188) (1.225)

�rm Qihoo360 27.084 31.405 8.399 11.151 4.385
∗∗∗

4.713
∗∗∗

(28.443) (28.545) (13.773) (13.805) (0.889) (0.896)

�rm Reactive-Extensions 12.295 9.249 16.013
∗

18.364
∗∗

3.016
∗∗∗

3.979
∗∗∗

(18.482) (18.918) (8.949) (9.149) (0.712) (0.791)

1
0
7

Dependent variable:

Number of Issues Number of Contributors Top Project

normal normal logistic

(3.13) (3.14) (3.15) (3.16) (3.17) (3.18) (3.19) (3.20) (3.21) (3.22) (3.23) (3.24)

�rm Shopify 8.128 14.190 8.601
∗

14.477
∗∗∗

1.474
∗∗∗

2.713
∗∗∗

(10.368) (11.477) (5.021) (5.550) (0.536) (0.582)

�rm sourcegraph 9.240 9.569 9.172 11.913
∗

1.420
∗∗

1.657
∗∗

(12.625) (14.024) (6.113) (6.782) (0.652) (0.706)

�rm spotify 10.709 12.302 13.646
∗∗

19.293
∗∗∗

1.394
∗∗

2.593
∗∗∗

(11.583) (12.212) (5.609) (5.906) (0.580) (0.619)

�rm square 9.775 11.049 10.174
∗∗

16.483
∗∗∗

2.670
∗∗∗

3.844
∗∗∗

(9.848) (10.762) (4.769) (5.205) (0.442) (0.491)

�rm stripe 1.525 5.807 13.700
∗

18.910
∗∗∗

2.186
∗∗∗

3.363
∗∗∗

(14.499) (15.151) (7.021) (7.327) (0.582) (0.628)

�rm thoughtbot 4.963 11.521 14.751
∗∗∗

21.141
∗∗∗

1.889
∗∗∗

3.558
∗∗∗

(9.981) (11.232) (4.833) (5.432) (0.470) (0.534)

�rm tumblr 8.418 12.004 5.231 12.260 2.643
∗∗∗

3.808
∗∗∗

(18.386) (18.922) (8.903) (9.151) (0.718) (0.756)

�rm twilio 11.977 13.025 7.517 11.536 2.071
∗∗∗

3.278
∗∗∗

(17.904) (18.349) (8.669) (8.874) (0.713) (0.784)

�rm twi�er 10.452 11.960 4.574 9.325 2.334
∗∗∗

3.544
∗∗∗

(11.746) (12.329) (5.687) (5.963) (0.486) (0.525)

1
0
8

Dependent variable:

Number of Issues Number of Contributors Top Project

normal normal logistic

(3.13) (3.14) (3.15) (3.16) (3.17) (3.18) (3.19) (3.20) (3.21) (3.22) (3.23) (3.24)

�rm ValveSo�ware 147.585
∗∗∗

149.228
∗∗∗

39.073
∗∗∗

39.290
∗∗∗

5.031
∗∗∗

5.060
∗∗∗

(28.443) (28.463) (13.773) (13.765) (0.957) (0.972)

�rm venmo 11.621 17.151 9.068 16.387
∗∗

2.216
∗∗∗

3.375
∗∗∗

(15.399) (16.134) (7.457) (7.803) (0.670) (0.724)

�rm xamarin 8.392 7.062 8.570 17.036
∗∗

2.387
∗∗∗

2.533
∗∗∗

(13.523) (15.300) (6.548) (7.399) (0.571) (0.652)

�rm yahoo 12.268 9.708 8.536
∗∗

11.367
∗∗

0.693 1.850
∗∗∗

(8.811) (9.743) (4.266) (4.712) (0.598) (0.634)

�rm Yalantis 12.839 15.420 11.149 20.419
∗∗

4.407
∗∗∗

5.533
∗∗∗

(17.956) (18.727) (8.695) (9.057) (0.623) (0.670)

�rm Yelp 14.280 20.465
∗

8.881 11.987
∗∗

1.416
∗∗

2.707
∗∗∗

(11.501) (12.270) (5.569) (5.934) (0.556) (0.613)

�rm yhat 37.694 41.471
∗

12.393 14.404 2.774
∗∗∗

4.315
∗∗∗

(24.013) (24.392) (11.628) (11.796) (0.807) (0.836)

Constant 8.443
∗∗∗ −2.780 −19.593

∗∗∗ −34.006
∗∗∗

5.114
∗∗∗

4.488 −14.598
∗∗∗ −20.129

∗∗∗ −3.426
∗∗∗ −2.546

∗∗∗ −5.820
∗∗∗ −6.276

∗∗∗

(2.981) (7.707) (7.118) (10.018) (1.533) (3.933) (3.447) (4.845) (0.140) (0.251) (0.437) (0.529)

1
0
9

Dependent variable:

Number of Issues Number of Contributors Top Project

normal normal logistic

(3.13) (3.14) (3.15) (3.16) (3.17) (3.18) (3.19) (3.20) (3.21) (3.22) (3.23) (3.24)

Observations 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419 3,419

Log Likelihood −19,630.080 −19,616.630 −19,514.800 −19,507.690 −17,355.340 −17,316.430 −17,035.330 −17,023.880 −1,458.752 −1,373.897 −1,208.251 −1,150.787

Akaike Inf. Crit. 39,266.160 39,257.260 39,149.610 39,153.370 34,716.680 34,656.870 34,190.660 34,185.760 2,923.504 2,771.795 2,536.502 2,439.574

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 43: Detailed Regression Table: Impact of ”Age” and ”Ratio” on ”Issues”, ”Contrib-

utors”, ”Popularity” and ”Top Project” through Fi�ing Generalized Linear Models. Using

(a) dummy variables for each Firm in model 3.15, 3.19 and 3.23 (b) dummy variables for

each Language in model 3.14, 3.18, 3.22 (c) dummy variables for each Firm and Language

in model 3.16, 3.20 and 3.24

1
1
0

Dependent variable:

Stars Subscribers Forks Number of Issues Number of Contributors Top Project

linear linear linear linear linear generalized linear

mixed-e�ects mixed-e�ects mixed-e�ects mixed-e�ects mixed-e�ects mixed-e�ects

(3.31) (3.32) (3.33) (3.34) (3.35) (3.36)

Ratio 168.200
∗∗

17.839
∗∗∗

33.219 5.788 1.305 1.765
∗∗∗

(82.283) (6.258) (20.382) (4.133) (2.042) (0.189)

Age 0.466
∗∗∗

0.038
∗∗∗

0.149
∗∗∗

0.020
∗∗∗

0.021
∗∗∗

0.001
∗∗∗

(0.050) (0.004) (0.012) (0.002) (0.001) (0.0001)

Constant 102.770 43.266
∗∗∗ −18.116 2.346 1.793 −3.393

∗∗∗

(119.455) (10.364) (24.220) (4.530) (3.133) (0.315)

Observations 3,419 3,419 3,419 3,419 3,419 3,419

Log Likelihood −29,760.380 −20,956.550 −25,023.000 −19,581.640 −17,133.280 −1,252.915

Akaike Inf. Crit. 59,532.760 41,925.100 50,058.000 39,175.290 34,278.570 2,515.830

Bayesian Inf. Crit. 59,569.590 41,961.920 50,094.820 39,212.110 34,315.390 2,546.516

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 44: Impact of ”Age” and ”Ratio” on projects’ social metrics (”Stars”, ”Subscribers”, ”Forks” and ”Issues”) and popularity (is ”Top Project” yes / no)

through Mixed Model between Firms and Programming Languages. ”Number of Contributors” is just a control a�ribute and not a describing model.

1
1
1

Dependent variable:

Ratio

(3.37) (3.38) (3.39) (3.40) (3.41) (3.42)

Stars 0.00000

(0.00000)

Subscribers 0.0001
∗∗

(0.00005)

Forks 0.00001

(0.00001)

Number of Issues 0.0001

(0.0001)

Number of Contributors −0.00004

(0.0001)

Top Project 0.137
∗∗∗

(0.014)

Constant 0.549
∗∗∗

0.542
∗∗∗

0.550
∗∗∗

0.550
∗∗∗

0.552
∗∗∗

0.515
∗∗∗

(0.024) (0.024) (0.024) (0.024) (0.024) (0.023)

Observations 3,419 3,419 3,419 3,419 3,419 3,419

Log Likelihood −819.663 −814.992 −818.802 −816.630 −816.721 −767.020

Akaike Inf. Crit. 1,647.326 1,637.985 1,645.603 1,641.260 1,641.442 1,542.039

Bayesian Inf. Crit. 1,671.874 1,662.533 1,670.152 1,665.809 1,665.990 1,566.588

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 45: Impact of projects’ social metrics on ”Ratio” using Mixed-E�ects Models between �rms

(Model 3.37 - 3.42)

112

Dependent variable:

Ratio

(3.43) (3.44) (3.45) (3.46) (3.47) (3.48)

Stars 0.00001

(0.00000)

Subscribers 0.0001
∗∗

(0.00005)

Forks 0.00001

(0.00001)

Number of Issues 0.0001

(0.0001)

Number of Contributors −0.00004

(0.0001)

Top Repo 0.125
∗∗∗

(0.014)

Constant 0.555
∗∗∗

0.550
∗∗∗

0.557
∗∗∗

0.556
∗∗∗

0.559
∗∗∗

0.521
∗∗∗

(0.029) (0.029) (0.029) (0.029) (0.029) (0.027)

Observations 3,419 3,419 3,419 3,419 3,419 3,419

Log Likelihood −795.593 −791.577 −794.918 −792.955 −792.904 −751.717

Akaike Inf. Crit. 1,601.185 1,593.154 1,599.837 1,595.910 1,595.808 1,513.433

Bayesian Inf. Crit. 1,631.871 1,623.839 1,630.522 1,626.595 1,626.494 1,544.119

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Table 46: Impact of projects’ social metrics on ”Ratio” using Mixed-E�ects Models between �rms

and programming languages (Model 3.43 - 3.48)

113

C Graphics and Plots

C.1 Introduction and�eory

JavaScript

Python

Java

Ruby
PHP

C
C++

Objective−C
C#

JavaScript

Python

Java

Ruby
PHP

C
C++

Objective−C
C#

50,000

100,000

50000 100000 150000 200000 250000
Stars

F
or

ks

Language
C

C#

C++

Java

JavaScript

Objective−C

PHP

Python

Ruby

Figure 13: Most popular languages on GitHub in 2014. �e cumulated numbers of forks and stars

on all projects can be regarded as proxy for the popularity of the programming language. �e size

of the circles represents the number of existing projects (proportions: JavaScript contains 323,938

projects, C# contains 56,062 projects)
87

87

Data origin: http://githut.info/

114

http://githut.info/

0

200

400

600

800
R

ep
os

ito
rie

s

License

epl 1.0

lgpl 3.0

cc0 1.0

agpl 3.0

bsd 2 clause

gpl 2.0

other

unspecified

apache 2.0

mit

bsd 3 clause

isc

mpl 2.0

gpl 3.0

unlicense

lgpl 2.1

wtfpl

Figure 14: License distribution of �rm’s residual projects on GitHub.

0

50

100

150

200

R
ep

os
ito

rie
s

License

lgpl 3.0

cc0 1.0

agpl 3.0

bsd 2 clause

gpl 2.0

other

unspecified

apache 2.0

mit

bsd 3 clause

mpl 2.0

gpl 3.0

unlicense

lgpl 2.1

ms pl

Figure 15: License distribution of �rm’s top projects on GitHub.

115

C.2 Plots of Code Contribution

0.00

0.05

0.10

0 5 10 15 20
Hour of Daytime

Firm Developer
no

yes

Figure 16: Code contributions by �rm employed and external developers based on worldwide con-

sideration (UTC time). Most commits are placed during the late evening which is between morning

and midday (9:00 - 16:00) in California, USA (UTC -8)

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 10 11 12
Month

Firm Developer
no

yes

Figure 17: Code contributions by �rm employed and external developers over the year (January -

December)

116

C.3 Plots of Repositories

0

100

200

300

400

0 1000 2000 3000 4000 5000
Stars

C
on

tr
ib

ut
or

s

Ratio
0.00

0.25

0.50

0.75

1.00

Top Project
no

yes

Figure 18: �e ”ratio” (code commitment share of �rm employed developers), represented by size

of dots, is quite high on all observed projects (≥ 0.5)

117

0

100

200

300

400

0 1000 2000 3000 4000 5000
Stars

C
on

tr
ib

ut
or

s

Ratio
0.00

0.05

0.10

0.15

0.20

0.25

Top Project
no

yes

Figure 19: If the ratio is low (≤ 0.25) there are fewer top projects / less stargazers

0

100

200

300

400

0 1000 2000 3000 4000 5000
Stars

C
on

tr
ib

ut
or

s

Ratio
0.75

0.80

0.85

0.90

0.95

1.00

Top Project
no

yes

Figure 20: If the ratio is higher (≥ 0.75) there are more top projects / stargazers

118

0

1000

2000

3000

300 600 900 1200 1500
Age

S
ta

rg
az

er
s

Ratio
0.00

0.25

0.50

0.75

1.00

Firm
adafruit

airbnb

alibaba

apple

applidium

Automattic

aws

Azure

bitly

cesanta

chef

cloudera

collectiveidea

docker

douban

dropbox

elastic

etsy

facebook

Flipboard

github

google

googlesamples

hashicorp

heroku

id−Software

Instagram

intridea

KnpLabs

linkedin

mapbox

Microsoft

mongodb

mutualmobile

Netflix

openstack

owncloud

ParsePlatform

paypal

phacility

Qihoo360

Reactive−Extensions

Shopify

sourcegraph

spotify

square

stripe

thoughtbot

tumblr

twilio

twitter

ValveSoftware

venmo

xamarin

yahoo

Yalantis

Yelp

yhat

Top Project
no

yes

Figure 21: �e age of projects (in days), their popularity (number of stars), colored by �rms, size of shapes by ”ratio” (code commitment share of �rm

employed developers) and shape by ”Top Project” or ”Residual Project”. All plo�ed projects are less than 4.5 years old.

1
1
9

0

1000

2000

3000

300 600 900 1200 1500
Age

S
ta

rg
az

er
s

Ratio
0.00

0.25

0.50

0.75

1.00

Firm
adafruit

airbnb

alibaba

apple

applidium

Automattic

aws

Azure

bitly

cesanta

chef

cloudera

collectiveidea

docker

douban

dropbox

elastic

etsy

facebook

Flipboard

github

google

googlesamples

hashicorp

heroku

id−Software

Instagram

intridea

KnpLabs

linkedin

mapbox

Microsoft

mongodb

mutualmobile

Netflix

openstack

owncloud

ParsePlatform

paypal

phacility

Qihoo360

Reactive−Extensions

Shopify

sourcegraph

spotify

square

stripe

thoughtbot

tumblr

twilio

twitter

ValveSoftware

venmo

xamarin

yahoo

Yalantis

Yelp

yhat

Top Project
no

yes

Figure 22: �e age of projects (in days), their popularity (number of stars), colored by (all) �rms, size of shapes by ”ratio” (code commitment share of �rm

employed developers) and shape by ”Top Project” or ”Residual Project”. All plo�ed projects are less than 4.5 years old.

1
2
0

0

1000

2000

3000

300 600 900 1200 1500
Age

S
ta

rg
az

er
s

Firm
adafruit

Automattic

facebook

google

heroku

Microsoft

Ratio
0.00

0.25

0.50

0.75

1.00

Top Project
no

yes

Figure 23: �e age of projects (in days), their popularity (number of stars), colored by �rms with most popular OS projects, size of shapes by ”ratio” (code

commitment share of �rm employed developers) and shape by ”Top Project” or ”Residual Project”. All plo�ed projects are less than 4.5 years old.

1
2
1

100

200

300

400

0 2500 5000 7500 10000
Stars

S
ub

sc
rib

er
s

firm's code commit share
less than 50%

more/equal than 50%

Top Project
no

yes

Figure 24: Seperation in ratio < 0.5 and ≥ 0.5; Plo�ed with Stars against Subscribers (proxies for popularity), colored in Top and Residual Projects and

scaled x-axis up to 10,000 stars.

1
2
2

100

200

300

400

0 1000 2000 3000 4000 5000
Stars

S
ub

sc
rib

er
s

firm's code commit share
less than 50%

more/equal than 50%

Top Project
no

yes

Figure 25: Same as �gure 24 but with scaled x-axis up to 5000 stars.

1
2
3

100

200

300

400

250 500 750 1000
Stars

S
ub

sc
rib

er
s

firm's code commit share
less than 50%

more/equal than 50%

Top Project
no

yes

Figure 26: Same as �gure 24 but with scaled x-axis up to 1000 stars.

1
2
4

C.4 Plots for H 1.1

See page 40 for explanation of slopes and axes.

0

250

500

750

1000

0 250 500 750 1000

Figure 27: All Projects (Model 1.1.1 - 1.1.2)

0

250

500

750

1000

0 250 500 750 1000

Figure 28: Top Projects (Model 1.1.3 - 1.1.4)

0

500

1000

1500

2000

0 500 1000 1500 2000

Figure 29: Residual Projects (Model 1.1.5 - 1.1.6)

0

500

1000

1500

2000

0 500 1000 1500 2000

Figure 30: Older Top Projects (Model 1.1.7 - 1.1.8)

0

500

1000

1500

2000

0 500 1000 1500 2000

Figure 31: Older Residual Projects (Model 1.1.9 -

1.1.10)

0

500

1000

1500

2000

0 500 1000 1500 2000

Figure 32: Younger Top Projects (Model 1.1.11 -

1.1.12)

C.5 Plots for H 1.2.1

See page 40 for explanation of slopes and axes.

125

0

500

1000

1500

0 25 50 75

Figure 33: All Projects (Model 1.2.1 - 1.2.2)

0

5000

10000

0 50 100 150 200

Figure 34: Top Projects (Model 1.2.3 - 1.2.24)

0

500

1000

1500

0 25 50 75

Figure 35: Residual Projects(Model 1.2.5 - 1.2.6)

0

500

1000

1500

0 25 50 75

Figure 36: Older Top Projects

(Model 1.2.7 - 1.2.8)

0

500

1000

1500

0 25 50 75

Figure 37: Older Residual Projects

(Model 1.2.9 - 1.2.10)

0

500

1000

1500

0 25 50 75

Figure 38: Younger Top Projects

(Model 1.2.11 - 1.2.12)

0

500

1000

1500

0 25 50 75

Figure 39: Younger Residual Projects

(Model 1.2.13 - 1.2.14)

126

C.6 Plots for H 1.2.2

See page 40 and 45 for explanation of slopes and axes.

0

2500

5000

7500

10000

0 250 500 750

Figure 40: Comments of Issues (Model 1.3.3- 1.3.4)

0

2500

5000

7500

10000

0 200 400 600

Figure 41: Comments of Issues

(Model 1.3.3- 1.3.4)

0

2500

5000

7500

0 250 500 750

Figure 42: Comments of Issues

(Model 1.3.5- 1.3.6)

127

D Open Source So�ware used for making this Study

�e following open source so�ware is used to receive, process, analyze and present the data (this

list is not fully inclusive):

Atom Editor (https://github.com/atom/atom)

R Studio (https://github.com/rstudio/rstudio)

foreign (Venables and Ripley (2002))

MASS (R Core Team (2015))

xtable (Dahl (2016))

stargazer (Hlavac (2015))

stringr (Wickham (2015))

ggplot2 (Wickham (2009))

scales (Wickham (2016))

PerformanceAnalytics (Peterson and Carl (2014))

xts (Ryan and Ulrich (2014))

TeachingDemos (Snow (2016))

NodeJS (https://github.com/nodejs/node) using the following npm modules:

csv (0.4.6)

csv-stringify (v0.0.8)

co�ee-script (v1.9.0)

fast-csv (v0.6.0)

github (v0.2.4)

glob (v6.0.4)

globs (v0.1.2)

google (v1.4.0)

js-yaml (v3.4.3)

kerberos (v0.0.18)

minimist (v1.2.0)

moment (v2.10.6)

moment-timezone (v0.4.1)

mongodb (v2.1.7)

mongoskin (v2.0.0)

nodemailer (v1.8.0)

procstreams (v0.3.0)

progress (v1.1.8)

request (v2.61.0)

128

https://github.com/atom/atom
https://github.com/rstudio/rstudio
https://github.com/nodejs/node

sequence (v3.0.0)

split (v1.0.0)

underscore (v1.8.3)

yargs (v3.27.0)

MariaDB (https://github.com/MariaDB/server)

MongoDB (https://github.com/mongodb/mongo)

Texmaker (http://www.xm1math.net/texmaker/download.html)

LATEX (https://www.latex-project.org/)

129

https://github.com/MariaDB/server
https://github.com/mongodb/mongo
http://www.xm1math.net/texmaker/download.html
https://www.latex-project.org/

References

Afuah, A. and C. L. Tucci (2012): “Crowdsourcing as a solution to distant search,” Academy of

Management Review, 37, 355–375.

Agresti, A. et al. (2007): “An introduction to categorical data analysis. Hoboken,” .

Alexy, O., P. Criscuolo, and A. Salter (2012): “Managing unsolicited ideas for R&D,” California

Management Review, 54, 116–139.

Amadeo, R. (2013): “Google’s iron grip on Android: Controlling open source

by any means necessary,” http://arstechnica.com/gadgets/2013/10/

googles-iron-grip-on-android-controlling-open-source-by-any-means-necessary/,

(Accessed on 03/26/2016).

Bates, D., M. Mächler, B. Bolker, and S. Walker (2015): “Fi�ing Linear Mixed-E�ects Models

Using lme4,” Journal of Statistical So�ware, 67, 1–48.

Ben Ogle, G. (2016): “Atom1.0,” http://blog.atom.io/2015/06/25/atom-1-0.html, (Visited on

01/20/2016).

Black Duck, m. (2015): “Top 20 Open Source Licenses — Black Duck,” https://www.

blackducksoftware.com/resources/data/top-20-open-source-licenses, (Visited on

12/25/2015).

Bobbie Johnson, T. G. (2008): “Cloud computing is a trap, warns GNU founder,” http://www.

theguardian.com/technology/2008/sep/29/cloud.computing.richard.stallman, (Visited

on 01/24/2016).

Bonaccorsi, A. and C. Rossi (2003): “Why open source so�ware can succeed,” Research policy, 32,

1243–1258.

Bonaccorsi, A. and C. Rossi (2006): “Comparing motivations of individual programmers and �rms

to take part in the open source movement: From community to business,” Knowledge, Technology

& Policy, 18, 40–64.

Bonaccorsi, A. and C. Rossi Lamastra (2003): “Licensing schemes in the production and distri-

bution of open source so�ware: An empirical investigation,” Available at SSRN 432641.

Bray, T. (2014): “�e javascript object notation (json) data interchange format,” .

Brian Doll, I. G. (2012): Analyzing Millions of GitHub Commits, (Accessed on 03/12/2016).

Bui, Q. (2014): “Who’s In �e O�ce? �e American Workday In One Graph : Planet

130

http://arstechnica.com/gadgets/2013/10/googles-iron-grip-on-android-controlling-open-source-by-any-means-necessary/
http://arstechnica.com/gadgets/2013/10/googles-iron-grip-on-android-controlling-open-source-by-any-means-necessary/
http://blog.atom.io/2015/06/25/atom-1-0.html
https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
http://www.theguardian.com/technology/2008/sep/29/cloud.computing.richard.stallman
http://www.theguardian.com/technology/2008/sep/29/cloud.computing.richard.stallman

Money : NPR,” http://www.npr.org/sections/money/2014/08/27/343415569/

whos-in-the-office-the-american-workday-in-one-graph, (Accessed on 03/14/2016).

Buxmann, P., T. Hess, and D.-W.-I. S. Lehmann (2008): “So�ware as a Service,” Wirtscha�sinfor-

matik, 50, 500–503.

Cade Metz, w. (2015): “Github’s Top Coding Languages Show Open Source Has Won,” http://

www.wired.com/2015/08/github-data-shows-changing-software-landscape/, (Visited on

01/17/2016).

Chacon, S. and B. Straub (2014): Pro git, Apress.

Chesbrough, H. (2003): “�e logic of open innovation: managing intellectual property,” California

Management Review, 45, 33–58.

Chesbrough, H. W. (2006): Open innovation: �e new imperative for creating and pro�ting from

technology, Harvard Business Press.

Cohen, W. M. and D. A. Levinthal (1990): “Absorptive capacity: A new perspective on learning

and innovation,” Administrative science quarterly, 128–152.

Dabbish, L., C. Stuart, J. Tsay, and J. Herbsleb (2012): “Social coding in GitHub: transparency

and collaboration in an open so�ware repository,” in Proceedings of the ACM 2012 conference on

Computer Supported Cooperative Work, ACM, 1277–1286.

Dahl, D. B. (2016): xtable: Export Tables to LaTeX or HTML, r package version 1.8-2.

Dahlander, L. and D. M. Gann (2010): “How open is innovation?” Research policy, 39, 699–709.

Dahlander, L. and M. G. Magnusson (2005): “Relationships between open source so�ware com-

panies and communities: Observations from Nordic �rms,” Research policy, 34, 481–493.

Dahlander, L. and H. Piezunka (2014): “Open to suggestions: How organizations elicit sugges-

tions through proactive and reactive a�ention,” Research Policy, 43, 812–827.

Dahlander, L. and M. W. Wallin (2006): “A man on the inside: Unlocking communities as com-

plementary assets,” Research Policy, 35, 1243–1259.

Dan Morrill, G. (2008): “Announcing the Android 1.0 SDK, release 1,” http://

android-developers.blogspot.de/2008/09/announcing-android-10-sdk-release-1.

html, (Visited on 01/23/2016).

Dohm, L. (2016): “Atom Reaches One Million Active Users,” http://blog.atom.io/2016/03/28/

atom-reaches-1m-users.html, (Accessed on 03/29/2016).

131

http://www.npr.org/sections/money/2014/08/27/343415569/whos-in-the-office-the-american-workday-in-one-graph
http://www.npr.org/sections/money/2014/08/27/343415569/whos-in-the-office-the-american-workday-in-one-graph
http://www.wired.com/2015/08/github-data-shows-changing-software-landscape/
http://www.wired.com/2015/08/github-data-shows-changing-software-landscape/
http://android-developers.blogspot.de/2008/09/announcing-android-10-sdk-release-1.html
http://android-developers.blogspot.de/2008/09/announcing-android-10-sdk-release-1.html
http://android-developers.blogspot.de/2008/09/announcing-android-10-sdk-release-1.html
http://blog.atom.io/2016/03/28/atom-reaches-1m-users.html
http://blog.atom.io/2016/03/28/atom-reaches-1m-users.html

Eilhard, J. (2009): “Open source incorporated,” Available at SSRN 1360604.

Eilhard, J. (2010): “Tapping into the source: corporate involvement in open source so�ware,” Ph.D.

thesis, École Nationale Supérieure des Mines de Paris.

Facebook (2015): “React Native — A framework for building native apps using React,” https://

facebook.github.io/react-native/, (Visited on 01/03/2016).

Facebook (2016): “React Native Readme,” https://github.com/facebook/react-native/blob/

d8e138770f20e6fe5c6ba86840c9ec0d74400011/README.md, (Visited on 01/03/2016).

Feller, J., B. Fitzgerald, et al. (2002): Understanding open source so�ware development, Addison-

Wesley London.

Finnegan, M. (2015): “Why Google’s programming language can rival Java

in the enterprise — Apps — Techworld,” http://www.techworld.com/apps/

why-googles-go-programming-language-could-rival-java-in-enterprise-3626140/,

(Visited on 01/17/2016).

Fitzgerald, B. (2006): “�e transformation of open source so�ware,” Mis �arterly, 587–598.

Fleming, L. and D. M. Waguespack (2007): “Brokerage, boundary spanning, and leadership in open

innovation communities,” Organization science, 18, 165–180.

Foley, M. J. (2008): “Microso�’s open-source strategy: A picture is

worth a thousand words — ZDNet,” http://www.zdnet.com/article/

microsofts-open-source-strategy-a-picture-is-worth-a-thousand-words/, (Visited

on 01/09/2016).

Foundation, F. S. (2007): “GNU A�ero General Public License, Version 3.0 - GNU-Projekt -

Free So�ware Foundation,” http://www.gnu.org/licenses/agpl-3.0.de.html, (Visited on

01/24/2016).

Foundation, F. S. (2016): “What is free so�ware? - GNU Project - Free So�ware Foundation,” https:

//www.gnu.org/philosophy/free-sw.en.html, (Visited on 12/25/2015).

Frederic Lardinois, T. (2015): “Microso� Launches Visual Studio Code, A Free Cross-Platform

Code Editor For OS X, Linux And Windows,” http://techcrunch.com/2015/04/29/

microsoft-shocks-the-world-with-visual-studio-code-a-free-code-editor-for-os-x-linux-and-windows/,

(Visited on 01/18/2016).

Gal, A. (2016): “Oracle sinks its claws into Android,” http://andreasgal.com/2016/01/05/

oracle-sinks-its-claws-into-android/, (Accessed on 03/26/2016).

132

https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://github.com/facebook/react-native/blob/d8e138770f20e6fe5c6ba86840c9ec0d74400011/README.md
https://github.com/facebook/react-native/blob/d8e138770f20e6fe5c6ba86840c9ec0d74400011/README.md
http://www.techworld.com/apps/why-googles-go-programming-language-could-rival-java-in-enterprise-3626140/
http://www.techworld.com/apps/why-googles-go-programming-language-could-rival-java-in-enterprise-3626140/
http://www.zdnet.com/article/microsofts-open-source-strategy-a-picture-is-worth-a-thousand-words/
http://www.zdnet.com/article/microsofts-open-source-strategy-a-picture-is-worth-a-thousand-words/
http://www.gnu.org/licenses/agpl-3.0.de.html
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/philosophy/free-sw.en.html
http://techcrunch.com/2015/04/29/microsoft-shocks-the-world-with-visual-studio-code-a-free-code-editor-for-os-x-linux-and-windows/
http://techcrunch.com/2015/04/29/microsoft-shocks-the-world-with-visual-studio-code-a-free-code-editor-for-os-x-linux-and-windows/
http://andreasgal.com/2016/01/05/oracle-sinks-its-claws-into-android/
http://andreasgal.com/2016/01/05/oracle-sinks-its-claws-into-android/

Gartner (2015): “Gartner Says Tablet Sales Continue to Be Slow in 2015,” https://www.gartner.

com/newsroom/id/2954317, (Visited on 01/05/2016).

Ghosh, R. A. (2007): “Economic impact of open source so�ware on innovation and the competitive-

ness of the Information and Communication Technologies (ICT) sector in the EU,” .

GitHub (2014): “Forking Projects · GitHub Guides,” https://guides.github.com/activities/

forking/, (Visited on 2015.10.07).

GitHub (2015a): “GitHub API Limit on Search,” https://developer.github.com/v3/search/

#rate-limit, (Visited on 2015.10.06).

GitHub (2015b): “GitHub API v3,” https://developer.github.com/v3/, (Visited on 2015.10.07).

GitHub (2015c): “Starring — GitHub API,” https://developer.github.com/v3/activity/

starring/, (Visited on 2015.10.07).

GitHub (2015d): “Watching — GitHub API,” https://developer.github.com/v3/activity/

watching/, (Visited on 2015.10.07).

GitHub (2016a): “Electron,” http://electron.atom.io/, (Visited on 01/18/2016).

GitHub (2016b): “Press,” https://github.com/about/press, (Visited on 01/17/2016).

GitHub and A. La (2015): “Language Trends on GitHub,” https://github.com/blog/

2047-language-trends-on-github, (Visited on 2015.10.06).

GitHub and K. Neath (2007): “Issues 2.0: �e Next Generation,” https://github.com/blog/

831-issues-2-0-the-next-generation, (Visited on 2015.10.07).

Greene, T. C. (2001): “Ballmer: ”Linux is a cancer”,” http://www.theregister.co.uk/2001/06/

02/ballmer linux is a cancer/, (Accessed on 03/20/2016).

Grigorik, I. (2012): “�e github archive,” .

Gruber, M., I. C. MacMillan, and J. D. Thompson (2008): “Look before you leap: Market oppor-

tunity identi�cation in emerging technology �rms,” Management Science, 54, 1652–1665.

Hall, S. (2015): “GitLab Raises $1.5 Million as Code Sharing and Open

Source Gains Acceptance - �e New Stack,” http://thenewstack.io/

gitlab-raises-1-5-million-as-code-sharing-and-open-source-gains-acceptance/,

(Visited on 01/03/2016).

Hanna, J. (2010): “Mixing Open Source and Proprietary So�ware Strategies,” http://

133

https://www.gartner.com/newsroom/id/2954317
https://www.gartner.com/newsroom/id/2954317
https://guides.github.com/activities/forking/
https://guides.github.com/activities/forking/
https://developer.github.com/v3/search/#rate-limit
https://developer.github.com/v3/search/#rate-limit
https://developer.github.com/v3/
https://developer.github.com/v3/activity/starring/
https://developer.github.com/v3/activity/starring/
https://developer.github.com/v3/activity/watching/
https://developer.github.com/v3/activity/watching/
http://electron.atom.io/
https://github.com/about/press
https://github.com/blog/2047-language-trends-on-github
https://github.com/blog/2047-language-trends-on-github
https://github.com/blog/831-issues-2-0-the-next-generation
https://github.com/blog/831-issues-2-0-the-next-generation
http://www.theregister.co.uk/2001/06/02/ballmer_linux_is_a_cancer/
http://www.theregister.co.uk/2001/06/02/ballmer_linux_is_a_cancer/
http://thenewstack.io/gitlab-raises-1-5-million-as-code-sharing-and-open-source-gains-acceptance/
http://thenewstack.io/gitlab-raises-1-5-million-as-code-sharing-and-open-source-gains-acceptance/
http://hbswk.hbs.edu/item/mixing-open-source-and-proprietary-software-strategies
http://hbswk.hbs.edu/item/mixing-open-source-and-proprietary-software-strategies
http://hbswk.hbs.edu/item/mixing-open-source-and-proprietary-software-strategies

hbswk.hbs.edu/item/mixing-open-source-and-proprietary-software-strategies, (Ac-

cessed on 03/20/2016).

Hars, A. and S. Ou (2001): “Working for free? Motivations of participating in open source projects,”

in System Sciences, 2001. Proceedings of the 34th Annual Hawaii International Conference on, IEEE,

9–pp.

Hawkins, R. E. (2004): “�e economics of open source so�ware for a competitive �rm,” NETNOMICS:

Economic Research and Electronic Networking, 6, 103–117.

Henkel, J. (2006): “Selective revealing in open innovation processes: �e case of embedded Linux,”

Research policy, 35, 953–969.

Hertel, G., S. Niedner, and S. Herrmann (2003): “Motivation of so�ware developers in Open

Source projects: an Internet-based survey of contributors to the Linux kernel,” Research policy,

32, 1159–1177.

Hilbe, J. M. (2009): Logistic regression models, CRC Press.

Hill, S. A. and J. M. Birkinshaw (2009): “Idea sets: conceptualizing and measuring a new unit of

analysis in entrepreneurship research,” Organizational research methods.

Hippel, E. v. and G. v. Krogh (2003): “Open source so�ware and the “private-collective” innovation

model: Issues for organization science,” Organization science, 14, 209–223.

Hlavac, M. (2015): stargazer: Well-Forma�ed Regression and Summary Statistics Tables, Harvard

University, Cambridge, USA, r package version 5.2.

Holman, Z. (2011): “Introducing GitHub Enterprise,” https://github.com/blog/

978-introducing-github-enterprise, (Accessed on 03/27/2016).

Hyett, P. (2011): “GitHub Dominates the Forges,” https://github.com/blog/

865-github-dominates-the-forges, (Accessed on 03/27/2016).

Jeppesen, L. B. and K. R. Lakhani (2010): “Marginality and problem-solving e�ectiveness in broad-

cast search,” Organization science, 21, 1016–1033.

Joel Rosenblatt, B. (2016): “Google’s Android Generates $31 Billion Rev-

enue, Oracle Says,” http://www.bloomberg.com/news/articles/2016-01-21/

google-s-android-generates-31-billion-revenue-oracle-says-ijor8hvt, (Visited

on 01/23/2016).

Katila, R. and G. Ahuja (2002): “Something old, something new: A longitudinal study of search

behavior and new product introduction,” Academy of management journal, 45, 1183–1194.

134

http://hbswk.hbs.edu/item/mixing-open-source-and-proprietary-software-strategies
http://hbswk.hbs.edu/item/mixing-open-source-and-proprietary-software-strategies
http://hbswk.hbs.edu/item/mixing-open-source-and-proprietary-software-strategies
https://github.com/blog/978-introducing-github-enterprise
https://github.com/blog/978-introducing-github-enterprise
https://github.com/blog/865-github-dominates-the-forges
https://github.com/blog/865-github-dominates-the-forges
http://www.bloomberg.com/news/articles/2016-01-21/google-s-android-generates-31-billion-revenue-oracle-says-ijor8hvt
http://www.bloomberg.com/news/articles/2016-01-21/google-s-android-generates-31-billion-revenue-oracle-says-ijor8hvt

Koçulu, A. (2016): “I’ve Just Liberated My Modules,” https://medium.com/@azerbike/

i-ve-just-liberated-my-modules-9045c06be67c#.8ox036r7i, (Accessed on 03/23/2016).

Krishnamurthy, R., V. Jacob, S. Radhakrishnan, and K. Dogan (2016): “Peripheral Developer

Participation in Open Source Projects: An Empirical Analysis,” ACM Transactions on Management

Information Systems (TMIS), 6, 14.

Kuhn, B. M. (2016): “Sun, Oracle, Android, Google and JDK Copyle� FUD,” http://ebb.org/

bkuhn/blog/2016/01/05/jdk-in-android.html, (Accessed on 03/26/2016).

Lakhani, K., B. Wolf, J. Bates, and C. DiBona (2002): “�e boston consulting group hacker survey,”

Boston, �e Boston Consulting Group.

Laurent, A. M. S. (2004): Understanding open source and free so�ware licensing, O’Reilly Media, Inc.

Laursen, K. and A. Salter (2006): “Open for innovation: the role of openness in explaining inno-

vation performance among UK manufacturing �rms,” Strategic management journal, 27, 131–150.

Lerner, J. and J. Tirole (2002): “Some simple economics of open source,” �e journal of industrial

economics, 50, 197–234.

Lerner, J. and J. Triole (2000): “�e simple economics of open source,” Tech. rep., National Bureau

of Economic Research.

Licensing, O. S. (2004): “So�ware Freedom and Intellectual Property Law, Lawrence Rosen,” .

Loeliger, J. (2006): “Collaborating with GIT,” Linux Magazine, June.

Loeliger, J. and M. McCullough (2012): Version Control with Git: Powerful tools and techniques for

collaborative so�ware development, ” O’Reilly Media, Inc.”.

Metz, C. (2015): “How GitHub Conquered Google, Microso�, and Everyone Else,” http://www.

wired.com/2015/03/github-conquered-google-microsoft-everyone-else/, (Accessed on

03/27/2016).

Microsoft (2014): “Announcing .NET 2015 Preview: A New Era for .NET - .NET Blog

- Site Home - MSDN Blogs,” http://blogs.msdn.com/b/dotnet/archive/2014/11/12/

announcing-net-2015-preview-a-new-era-for-net.aspx, (Visited on 12/28/2015).

Microsoft (2015): “VS Code is Open Source!” https://code.visualstudio.com/updates/

vNovember# vs-code-is-open-source, (Visited on 01/18/2016).

Mustonen, M. (2003): “Copyle�—the economics of Linux and other open source so�ware,” Infor-

mation Economics and Policy, 15, 99–121.

135

https://medium.com/@azerbike/i-ve-just-liberated-my-modules-9045c06be67c#.8ox036r7i
https://medium.com/@azerbike/i-ve-just-liberated-my-modules-9045c06be67c#.8ox036r7i
http://ebb.org/bkuhn/blog/2016/01/05/jdk-in-android.html
http://ebb.org/bkuhn/blog/2016/01/05/jdk-in-android.html
http://www.wired.com/2015/03/github-conquered-google-microsoft-everyone-else/
http://www.wired.com/2015/03/github-conquered-google-microsoft-everyone-else/
http://blogs.msdn.com/b/dotnet/archive/2014/11/12/announcing-net-2015-preview-a-new-era-for-net.aspx
http://blogs.msdn.com/b/dotnet/archive/2014/11/12/announcing-net-2015-preview-a-new-era-for-net.aspx
https://code.visualstudio.com/updates/vNovember#_vs-code-is-open-source
https://code.visualstudio.com/updates/vNovember#_vs-code-is-open-source

Occhino, T. (2015): “React Native: Bringing modern web techniques to mobile — Engi-

neering Blog — Facebook Code,” https://code.facebook.com/posts/1014532261909640/

react-native-bringing-modern-web-techniques-to-mobile/, (Visited on 01/03/2016).

Olson, M. (2009): �e logic of collective action, vol. 124, Harvard University Press.

O’reilly, T. (2007): “What is Web 2.0: Design pa�erns and business models for the next generation

of so�ware,” Communications & strategies, 17.

Osterloh, M. and S. Rota (2007): “Open source so�ware development—Just another case of col-

lective invention?” Research Policy, 36, 157–171.

ownCloud (2016): “ownCloud Server or Enterprise Edition,” https://owncloud.com/lp/

owncloud-server-or-enterprise-edition/, (Accessed on 03/29/2016).

Paul Krill, I. (2015): “Java reigns, but Go language spikes in popularity,”

http://www.infoworld.com/article/2981872/application-development/

java-reigns-go-language-spikes-in-popularity.html, (Visited on 01/17/2016).

Peterson, B. G. and P. Carl (2014): PerformanceAnalytics: Econometric tools for performance and

risk analysis, r package version 1.4.3541.

Piezunka, H. and L. Dahlander (2013): “A study of organizations’ a�ention to suggestions by

externals over time,” .

Piller, F. T. and D. Walcher (2006): “Toolkits for idea competitions: a novel method to integrate

users in new product development,” r&D Management, 36, 307–318.

Popp, K. and R. Meyer (2010): Pro�t from So�ware Ecosystems: Business Models, Ecosystems and

Partnerships in the So�ware Industry, BoD–Books on Demand.

R Core Team (2015): foreign: Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, Weka, dBase,

…, r package version 0.8-66.

Raymond, E. S. (2001): “�e cathedral and the bazaar-musings on Linux and open source by an

accidental revoltionary (rev. ed.).” .

Reifman, J. (2007): “Microso�’s Sacred Cash Cow,” .

Richard M. Stallman, B. R. (2010): “What Does �at Server Really Serve?” http://www.

bostonreview.net/richard-stallman-free-software-DRM, (Visited on 01/24/2016).

Rosenkopf, L., A. Metiu, and V. P. George (2001): “From the bo�om up? Technical commi�ee

activity and alliance formation,” Administrative Science �arterly, 46, 748–772.

136

https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://code.facebook.com/posts/1014532261909640/react-native-bringing-modern-web-techniques-to-mobile/
https://owncloud.com/lp/owncloud-server-or-enterprise-edition/
https://owncloud.com/lp/owncloud-server-or-enterprise-edition/
http://www.infoworld.com/article/2981872/application-development/java-reigns-go-language-spikes-in-popularity.html
http://www.infoworld.com/article/2981872/application-development/java-reigns-go-language-spikes-in-popularity.html
http://www.bostonreview.net/richard-stallman-free-software-DRM
http://www.bostonreview.net/richard-stallman-free-software-DRM

Rosenkopf, L. and M. L. Tushman (1998): “�e coevolution of community networks and technol-

ogy: Lessons from the �ight simulation industry,” Industrial and Corporate Change, 7, 311–346.

Ryan, J. A. and J. M. Ulrich (2014): xts: eXtensible Time Series, r package version 0.9-7.

Schaaf, H. (2014): “�e Popularity of Go,” http://herman.asia/the-popularity-of-go, (Visited

on 01/17/2016).

Seber, G. A. and A. J. Lee (2012): Linear regression analysis, vol. 936, John Wiley & Sons.

Serdar Yegulalp, I. (2015): “Atom at 1.0: GitHub’s Node-based editor is just get-

ting started,” http://www.infoworld.com/article/2940432/development-tools/

atom-at-10-githubs-node-based-editor-is-just-getting-started.html, (Visited

on 01/18/2016).

Seth, G. (2016): “ChakraCore GitHub repository is now open — Microso� Edge Dev Blog,”

https://blogs.windows.com/msedgedev/2016/01/13/chakracore-now-open/, (Visited on

01/14/2016).

Shafranovich, Y. (2005): “Common format and MIME type for Comma-Separated Values (CSV)

�les,” .

Shane, S. (2000): “Prior knowledge and the discovery of entrepreneurial opportunities,” Organiza-

tion science, 11, 448–469.

Simcoe, R. (2006): “Public and private participation in the development of and governance of the

internet. R. Nelson, ed,” �e Limits and Complexities of Market Organization.

Snow, G. (2016): TeachingDemos: Demonstrations for Teaching and Learning, r package version 2.10.

Sobo, N. (2014a): “Atom Is Now Open Source,” http://blog.atom.io/2014/05/06/

atom-is-now-open-source.html, (Visited on 01/18/2016).

Sobo, N. (2014b): “Introducing Atom,” http://blog.atom.io/2014/02/26/introducing-atom.

html, (Visited on 01/18/2016).

Stallman, R. M. (2014): “Why “Free So�ware” is be�er than “Open Source” - GNU Project - Free

So�ware Foundation,” https://www.gnu.org/philosophy/free-software-for-freedom.en.

html, (Visited on 12/25/2015).

Stallmann, R. M. (2015): “Copyle�: Pragmatic Idealism - GNU Project - Free So�ware Foundation,”

https://www.gnu.org/philosophy/pragmatic.en.html, (Visited on 12/25/2015).

Stamelos, I., L. Angelis, A. Oikonomou, and G. L. Bleris (2002): “Code quality analysis in open

source so�ware development,” Information Systems Journal, 12, 43–60.

137

http://herman.asia/the-popularity-of-go
http://www.infoworld.com/article/2940432/development-tools/atom-at-10-githubs-node-based-editor-is-just-getting-started.html
http://www.infoworld.com/article/2940432/development-tools/atom-at-10-githubs-node-based-editor-is-just-getting-started.html
https://blogs.windows.com/msedgedev/2016/01/13/chakracore-now-open/
http://blog.atom.io/2014/05/06/atom-is-now-open-source.html
http://blog.atom.io/2014/05/06/atom-is-now-open-source.html
http://blog.atom.io/2014/02/26/introducing-atom.html
http://blog.atom.io/2014/02/26/introducing-atom.html
https://www.gnu.org/philosophy/free-software-for-freedom.en.html
https://www.gnu.org/philosophy/free-software-for-freedom.en.html
https://www.gnu.org/philosophy/pragmatic.en.html

Steve Trousdale, R. (2016): “Oracle lawyer says Google’s Android generated $31 billion

revenue,” http://www.reuters.com/article/us-oracle-google-lawsuit-idUSKCN0UZ2W9,

(Visited on 01/23/2016).

Surowiecki, J. (2005): �e wisdom of crowds, Anchor.

Terrell J, K. A. e. a. (2016): “Gender bias in open source: Pull request acceptance of women versus

men,” Information Systems Journal.

Thung, F., T. F. Bissyandé, D. Lo, and L. Jiang (2013): “Network structure of social coding in

github,” in So�ware Maintenance and Reengineering (CSMR), 2013 17th European Conference on,

IEEE, 323–326.

TIOBE (2015): “TIOBE Index for October 2015,” http://www.tiobe.com/index.php/content/

paperinfo/tpci/index.html, retrieved 10.06.2015.

Tsay, J., L. Dabbish, and J. Herbsleb (2014): “In�uence of social and technical factors for evaluating

contribution in GitHub,” in Proceedings of the 36th international conference on So�ware engineering,

ACM, 356–366.

Uhlenhuth, K. (2015): “We’re moving to GitHub! - �e Visual Basic Team - Site

Home - MSDN Blogs,” http://blogs.msdn.com/b/vbteam/archive/2015/01/10/

we-re-moving-to-github.aspx, (Visited on 12/28/2015).

Urban, G. L. and E. Von Hippel (1988): “Lead user analyses for the development of new industrial

products,” Management science, 34, 569–582.

Van Baarsen, J. (2014): GitLab Cookbook, Packt Publishing Ltd.

Vasilescu, B., V. Filkov, and A. Serebrenik (2013): “StackOver�ow and GitHub: Associations

between so�ware development and crowdsourced knowledge,” in Social Computing (SocialCom),

2013 International Conference on, IEEE, 188–195.

Vaughan-Nichols, S. J. (2014): “Do-it-yourself corporate cloud with own-

Cloud 6 Enterprise Edition — ZDNet,” http://www.zdnet.com/article/

do-it-yourself-corporate-cloud-with-owncloud-6-enterprise-edition/, (Visited

on 01/03/2016).

Venables, W. N. and B. D. Ripley (2002): Modern Applied Statistics with S, New York: Springer,

fourth ed., iSBN 0-387-95457-0.

Von Hippel, E. (1976): “�e dominant role of users in the scienti�c instrument innovation process,”

Research policy, 5, 212–239.

138

http://www.reuters.com/article/us-oracle-google-lawsuit-idUSKCN0UZ2W9
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://blogs.msdn.com/b/vbteam/archive/2015/01/10/we-re-moving-to-github.aspx
http://blogs.msdn.com/b/vbteam/archive/2015/01/10/we-re-moving-to-github.aspx
http://www.zdnet.com/article/do-it-yourself-corporate-cloud-with-owncloud-6-enterprise-edition/
http://www.zdnet.com/article/do-it-yourself-corporate-cloud-with-owncloud-6-enterprise-edition/

Von Hippel, E. (1986): “Lead users: a source of novel product concepts,” Management science, 32,

791–805.

Von Hippel, E. (1994): ““Sticky information” and the locus of problem solving: implications for

innovation,” Management science, 40, 429–439.

Von Hippel, E. A. (2005): “Democratizing innovation,” .

Waguespack, D. M. and L. Fleming (2004): “Penguins, camels, and other birds of a feather: �e

emergence of leaders in open innovation communities,” Retrieved on January, 28, 2004.

Weinberger, M. (2015): “Microso� Windows OEM and O�ce revenue is

down as cloud grows - Business Insider,” http://www.businessinsider.com/

microsoft-windows-oem-and-office-revenue-is-down-as-cloud-grows-2015-4?IR=T,

(Accessed on 03/13/2016).

Weis, K. (2014): “GitHub CEO and Co-Founder Chris Wanstrath Keynot-

ing Esri’s DevSummit!” https://blogs.esri.com/esri/arcgis/2014/02/10/

github-ceo-and-co-founder-chris-wanstrath-keynoting-esris-devsummit/, (Accessed

on 03/27/2016).

Weiss, A. (2005): “Real world open source: �e TCO question. Serverwatch,” .

West, J. (2003): “How open is open enough?: Melding proprietary and open source platform strate-

gies,” Research policy, 32, 1259–1285.

West, J. and S. Gallagher (2006): “Challenges of open innovation: the paradox of �rm investment

in open-source so�ware,” R&d Management, 36, 319–331.

West, J. and S. O’mahony (2008): “�e role of participation architecture in growing sponsored open

source communities,” Industry and Innovation, 15, 145–168.

Wichmann, T. (2002): “Free/libre and open source so�ware: Survey and study (�oss), �nal report,

part II: Firms’ open source activities-motivations and policy implications,” Tech. rep., Technical

report.

Wickham, H. (2009): ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York.

Wickham, H. (2015): stringr: Simple, Consistent Wrappers for Common String Operations, r package

version 1.0.0.

Wickham, H. (2016): scales: Scale Functions for Visualization, r package version 0.4.0.

Wikipedia (2015): “Programming languages used in most popular websites - Wikipedia,

139

http://www.businessinsider.com/microsoft-windows-oem-and-office-revenue-is-down-as-cloud-grows-2015-4?IR=T
http://www.businessinsider.com/microsoft-windows-oem-and-office-revenue-is-down-as-cloud-grows-2015-4?IR=T
https://blogs.esri.com/esri/arcgis/2014/02/10/github-ceo-and-co-founder-chris-wanstrath-keynoting-esris-devsummit/
https://blogs.esri.com/esri/arcgis/2014/02/10/github-ceo-and-co-founder-chris-wanstrath-keynoting-esris-devsummit/

the free encyclopedia,” https://en.wikipedia.org/wiki/Programming languages used in

most popular websites, (Visited on 2015.10.06).

140

https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites
https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites

	Introduction
	Theory and Hypotheses
	Introduction and Prior Research
	Incentives of Firms to use Open Source
	How can Success of Firms' initiated Open Source Projects be measured?
	Open Source Software and Free Software Licenses
	Open Source Software as Public Good
	Open Source Business Models
	Open Source and Software as a Service (SaS)
	Open Source and Open Innovation
	Open Source Collaboration of Firms with external Developers
	GitHub as Host for observed Projects
	Increasing commitment of Companies to Open Source
	As an example of developing a common approach: Microsoft and Open Source
	GitHub's Atom Editor and Microsoft's Visual Studio Code as example for technology exchange between firms and collaboration with the OS community

	Forms of Participation on GitHub Projects
	Linear and Logistic Regression Models
	Fitting Linear Mixed-Effects Models
	Hypotheses

	Data
	Data Sources and Open Data Approach
	Selection of Programming Languages
	Restrictions of Data Collections
	Social-Success-Metrics of git Repositories
	Projects' Data Enquiry
	Firms are relevant commercial Organizations
	Structure of a git Project
	Branches of Interest
	Firms' License Usage
	Classification of Developers
	Evaluation and Classification of Commits
	Time and Location of Code Contribution
	Observed Repositories
	The Role of Developers on Issues
	Firms' OS Commitment as Proxy for Quality of Work Environment
	Microsoft and GitHub Inc.: Contribution and Social Success Metrics of Atom and VSC

	Analysis
	Terms and Definitions
	Slopes and Dots (on plot figures)
	H 1: Firm employees' participation affects the participation of external developers
	H 1.1: If firm employees contribute source code more often, external developers do as well
	H 1.1: Models and Terminology
	H 1.1: Plots
	H 1.1: Regression Tables
	H 1.1: Results and Interpretation

	H 1.2: If firm employees participate more often on issue threads, external developers do as well
	H 1.2.1: Models and Terminology for Issues
	H 1.2.1: Plots for Issues
	H 1.2.1: Regression Tables for Issues
	H 1.2.2: Models for Issues' Comments
	H 1.2.2: Plots for Issues' Comments
	H 1.2.2: Regression Tables for Issues' Comments
	H 1.2.1 and H 1.2.2: Results and Interpretation

	H 1: Results and Interpretation
	H 2: Firm employees' participation (in the beginning) affects the (later) success of firm-initiated open source projects
	H 2.1: If firm employees contribute source code more often in the beginning, the project gets more successful

	H 2.1: Regression Tables
	H 2.1: Interpretation and Conclusion
	H 3: If firm employees' contribution share is higher overall the more likely the project is popular
	H 3.1: Plots
	H 3.1: Regression Tables

	H 3: Results and Interpretation

	Results and Conclusion
	Implications and Managerial Advice
	Further Research

	Listings
	Tables
	Introduction and Theory
	Data and Basic Statistics Tables
	Regression Tables for H 1.1
	Regression Tables for H 1.2.1
	Regression Tables for H 1.2.2
	Regression Tables and Data Summary for H 2.1
	Regression Tables for H 3

	Graphics and Plots
	Introduction and Theory
	Plots of Code Contribution
	Plots of Repositories
	Plots for H 1.1
	Plots for H 1.2.1
	Plots for H 1.2.2

	Open Source Software used for making this Study
	References

